1) So sánh :
a) 544 và 2112
b) 255 và 333
2) CMR : 87 - 218 \(⋮\)14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
D = 5 + 52 + 53+...+ 5100
5.D = 52 + 53+...+5 100 + 5101
5D - D = 5101 - 5
4D = 5101 - 5
D = \(\dfrac{5^{101}-5}{4}\)
Bài 2:
So sánh
a, 544 = (2.33)4 = 24.312
2112 = (3.7)12 = 312.712
Vì 24 < 712 nên 544 < 2112
b, 339 và 1121
339 = (313)3
1121 = (117)3
313 = (32)6.3 = 96.3 < 97 < 117
Vậy 339 < 1121
1) \(D=5+5^2+5^3+...+5^{100}\)
\(\Rightarrow D+1=1+5+5^2+5^3+...+5^{100}\)
\(\Rightarrow D+1=\dfrac{5^{100+1}-1}{5-1}\)
\(\Rightarrow D+1=\dfrac{5^{101}-1}{4}\)
\(\Rightarrow D=\dfrac{5^{101}-1}{4}-1=\dfrac{5^{101}-5}{4}=\dfrac{5\left(5^{100}-1\right)}{4}\)
2)
a) \(21^{12}=\left(21^3\right)^4=9261^4>54^4\Rightarrow54^4< 21^{12}\)
b) \(3^{39}< 3^{40}=\left(3^2\right)^{20}=9^{20}< 11^{20}< 11^{21}\)
\(\Rightarrow3^{39}< 11^{21}\)
c) \(201^{60}=\left(201^4\right)^{15}=\text{1632240801}^{15}\)
\(398^{45}=\left(398^3\right)^{15}=\text{63044792}^{15}< \text{1632240801}^{15}\)
\(201^{60}>398^{45}\)
\(A=2^{21}-2^{18}=2^{18}\left(2^3-1\right)=7\cdot2^{18}=14\cdot2^{17}⋮14\\ B=3^{100}-2^{100}+3^{98}-2^{98}\\ B=3^{98}\left(3^2+1\right)-2^{97}\left(2^3+2\right)\\ B=3^{98}\cdot10-2^{97}\cdot10=10\left(3^{98}-2^{97}\right)⋮10\\ C=1+3+3^2+...+3^{99}\\ C=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\\ C=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^{96}\left(1+3+3^2+3^3\right)\\ C=\left(1+3+3^2+3^3\right)\left(1+3^4+...+3^{96}\right)\\ C=40\left(1+3^4+...+3^{36}\right)⋮40\)
a ) 87 . ( − 2 0 ) < | 87 . ( − 2 0 ) |
b ) 87 . ( − 2 0 ) = 87 . ( − 2 0 )
c ) 87 . ( − 2 0 ) = − | − 87 . 2 0 |
Cho A = 1/1×2 + 1/3×4 + 1/5×6 +...+ 1/217×218 và B = 1/110 + 1/111 + 1/112 +...+ 1/218
So sánh A và B
Lời giải:
a.
\(\overline{a,87}+\overline{2,b2}=a+0,87+2,02+\overline{0,b}\\ =(a+\overline{0,b})+(0,87+2,02)\\ =\overline{a,b}+2,89\)
b.
\(\overline{3a,81}+\overline{4,b5}+\overline{13,9c}=30,81+a+4,05+\overline{0,b}+13,9+\overline{0,0c}\\ =(30,81+4,05+13,9)+(a+\overline{0,b}+\overline{0,0c})\\ =48,76+\overline{a,bc}=\overline{a,bc}+20,36+28,4> \overline{a,bc}+20,36+28,04 \)
a. Quy đồng: \(BCNN\left(92,107\right)=9844\)
\(\Rightarrow\dfrac{87}{92}=\dfrac{9309}{9844};\dfrac{102}{107}=\dfrac{9384}{9844}\)
Do \(\dfrac{9309}{9844}< \dfrac{9384}{9844}\)
Vậy: \(\dfrac{87}{92}< \dfrac{102}{107}\)
b. Quy đồng: \(BCNN\left(60,17\right)=1020\)
\(\Rightarrow\dfrac{-61}{60}=\dfrac{-1037}{1020};\dfrac{16}{17}=\dfrac{960}{1020}\)
Do: \(\dfrac{-1037}{1020}< \dfrac{960}{1020}\)
Vậy: ...