\(\frac{x+2}{2x-m}=\frac{x+1}{2x-1}\) tìm m để pt có nghiệm duy nhất
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
HV
0
CT
17 tháng 4 2019
đầu tiên bn tính đenta
cho đenta lớn hơn hoặc = 0 thì pt có nghiệm
b, từ x1-2x2=5
=> x1=5+2x2
chứng minh đenta lớn hơn 0
theo hệ thức viet tính đc x1+x2=..
x1*x2=....
thay vào cái 1 rồi vào 2 là đc
A
0
27 tháng 5 2019
Ta có \(\Delta'=1-m\ge0\)=>\(m\le1\)
Theo viet ta có
\(x_1+x_2=2\)
Vì x1 là nghiệm của phương trình
=> \(x_1^2=2x_1-m\)
Khi đó
\(P=\frac{m^3-m^2+4m}{2\left(x_1+x_2\right)+m^2-m}+m^2+1\)
\(=\frac{m\left(m^2-m+4\right)}{m^2-m+4}+m^2+1=m^2+m+1=\left(m+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(MinP=\frac{3}{4}\)khi \(m=-\frac{1}{2}\)(thỏa mãn \(x\le1\))
IS
2
ĐK: \(x\ne\frac{m}{2},x\ne\frac{1}{2}\)
Pt <=> (x+2)(2x-1)=(2x-m)(x+1)
<=> \(2x^2+3x-2=2x^2-mx+2x-m\)
<=> (m+1)x=2-m (1)
Phương trình ban đầu có nghiệm duy nhất khi và chỉ khi phương trình (1) có nghiệm duy nhất khác m/2 và khác 1/2
<=> \(\hept{\begin{cases}m+1\ne0\\\frac{\left(m+1\right)m}{2}\ne2-m\\\frac{\left(m+1\right).1}{2}\ne2-m\end{cases}}\)
Em làm tiếp nhé!