K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2019

a, Pt có nghiệm \(x=\sqrt{2}\) tức là

\(2\left(m-4\right)-2m\sqrt{2}+m-2=0\)

\(\Leftrightarrow2m-8-2m\sqrt{2}+m-2=0\)

\(\Leftrightarrow m\left(3-2\sqrt{2}\right)=10\)

\(\Leftrightarrow m=\frac{10}{3-2\sqrt{2}}\)

b, *Với m = 4 thì pt trở thành

\(\left(4-4\right)x^2-2.4.x+4-2=0\)

\(\Leftrightarrow-8x+2=0\)

\(\Leftrightarrow x=\frac{1}{4}\)

Pt này ko có nghiệm kép

*Với \(m\ne4\)thì pt đã cho là pt bậc 2

Có \(\Delta'=m^2-\left(m-4\right)\left(m-2\right)=m^2-m^2-6m+8=-6m+8\)

Pt có nghiệm kép \(\Leftrightarrow\Delta'=0\)

                     

                           \(\Leftrightarrow m=\frac{4}{3}\)

Với \(m=\frac{4}{3}\) thì \(\Delta'=0\)

Pt có nghiệm kép \(x=\frac{-b'}{a}=\frac{m}{m-4}=\frac{\frac{4}{3}}{\frac{4}{3}-4}=-\frac{1}{2}\)

c, Pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\)

                                             \(\Leftrightarrow-6m+8>0\)

                                             \(\Leftrightarrow m< \frac{4}{3}\)

NV
30 tháng 4 2021

- Với \(m=0\Rightarrow x=-2\) thỏa mãn

- Với \(m\ne0\)

\(\Delta'=\left(m-1\right)^2-m\left(m-4\right)=2m+1\)

Pt có nghiệm hữu tỉ khi và chỉ khi \(2m+1\) là số chính phương

Mà \(2m+1\) lẻ \(\Rightarrow2m+1\) là SCP lẻ

\(\Rightarrow2m+1=\left(2k+1\right)^2\) với \(k\in N\)

\(\Rightarrow m=2k\left(k+1\right)\)

Vậy với \(m=2k\left(k+1\right)\) (với \(k\in N\)) thì pt có nghiệm hữu tỉ

4 tháng 3 2020

2)

a)Thay m = 2 vào hệ, ta được :

HPT :\(\hept{\begin{cases}2x+4y=2+1\\x+\left(2+1\right)y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+4y=3\left(^∗\right)\\x+3y=2\left(^∗^∗\right)\end{cases}}\)

Lấy (*) trừ (**), ta được :
\(2x+4y-x-3y=3-2\)

\(\Leftrightarrow x+y=1\)(***)

Lấy (**) trừ (***), ta được :

\(\Leftrightarrow x+3y-x-y=2-1\)

\(\Leftrightarrow2y=1\)

\(\Leftrightarrow y=\frac{1}{2}\)

\(\Leftrightarrow x=1-\frac{1}{2}=\frac{1}{2}\)

Vậy với \(m=2\Leftrightarrow\left(x;y\right)\in\left\{\frac{1}{2};\frac{1}{2}\right\}\)

b) Thay \(\left(x;y\right)=\left(2;-1\right)\)vào hệ, ta được :

HPT :\(\hept{\begin{cases}2m-2m=m+1\\2-\left(m+1\right)=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m+1=0\\m+1=0\end{cases}}\)

\(\Leftrightarrow m=-1\)

Vậy với \(\left(x,y\right)=\left(2;-1\right)\Leftrightarrow m=-1\)

8 tháng 1 2016

Cái x khác -1;-2 bạn tự tìm

Để PT có 2 nghiệm phân biệt thì:

[-(m2+m+1)]2-4.m.(m+1)>0

<=>m4+m2+1+2m3+2m2+2m-4m2-4m>0

<=>m4+2m3-m2-2m+1>0

<=>m4+2m3-2m2+m2-2m+1>0

<=>m4+2m2.(m-1)+(m-1)2>0

<=>(m2+m-1)2>0

Mà (m2+m-1)2 > hoặc = 0 nên:

(m2+m-1)2 khác 0

=>m2+m-1 khác 0

còn lại bạn tự giải tiếp

8 tháng 1 2016

bài này mk chưa học 

15 tháng 1 2016

Để pt có hai nghiệm phân biệt âm cần :

m khác 1 

\(\Delta'=\left(m-1\right)^2-\left(m-1\right)m>0\)

\(x1+x2=\frac{-2\left(m-1\right)}{m-1}<0\left(luônđúng\right)\)

\(x1\cdot x2=\frac{-m}{\left(m-1\right)}<0\)

15 tháng 1 2016

đê pt có 2 nghiệm đều âm thì

s<0 và p>0

-2(m-1)/(m-2)<0<=>hai trường hợp

th1: m<1;m<2=>m<1 và -m/(m+1)>0<=>2 trường hợp

             .m<0;m>-1<=>-1<m<0

             .m>0;m<-1<=>m<-1 hoặc m>0

th2 tương tự

7 tháng 11 2019

ĐKXĐ:...

\(\sqrt{2x^2+\left(m-4\right)x+3}=x-2\)

\(\Leftrightarrow2x^2+mx-4x+3-x^2+4x-4=0\)

\(\Leftrightarrow x^2+mx-1=0\)

\(\Leftrightarrow.....\)