K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tứ giác AEDF có

AE//DF

AF//DE

Do đó: AEDF là hình bình hành

Suy ra: AD cắt EF tại trung điểm của mỗi đường

=>I là trung điểm của AD

25 tháng 2 2020

a) Xét tứ giác AMDN, ta có:

^A = ^N = ^M = 90o (gt)

Vậy tứ giác AMDN là hình chữ nhật.

b) *Xét △ABD, ta có:

K là trung điểm BD (gt)

I là trung điểm AD (gt)

⇒ KI là đường trung bình của △ABD.

⇒ KI // AB và KI = 12

AB. (1)

*Ta có:

DN ⊥ AC (gt)

AB ⊥ AC (△ABC vuông tại A)

⇒ DN // AB. (2)

Từ (1) và (2) suy ra KI // DN

*Xét △v ABC, ta có:

BD = CD (gt)

⇒ AD là đường trung tuyến

⇒ AD = BD = 12

AC

⇒ △ABD cân tại D

Mà DM ⊥ AB

⇒ DM là đường cao đồng thời là đường trung tuyến

⇒ MA = MB

*Ta có:

MA = 12

AB (cmt)

KI = 12

AB (cmt)

⇒MA = KI

Mà MA = DN (AMDN là hình chữ nhật)

Nên KI = DN

*Ta có:

KI // DN (cmt)

KI = DN (cmt)

Vậy INDK là hình bình hành

c) *Ta có:

KI //AM (KI // AB)

DM ⊥ AM (gt)

⇒KI ⊥ DM

*Xét tứ giác DIMK, ta có:

KI ⊥ DM (cmt)

Vậy DIMK là hình thoi.

d) Xét hình chữ nhật AMDN, ta có:

MN, AD là hai đường chéo

Mà I là trung điểm AD (gt)

Nên I là trung điểm MN

Vậy M, N đối xứng với nhau qua I.

31 tháng 12 2016

Vì DF // AE (DF//AB; E \(\in AB\)) nên \(\widehat{AEF}=\widehat{EFD}\) (2 góc so le trong)

Hay \(\widehat{AEI}=\widehat{IFD}\) ( I \(\in EF\) )

Xét \(\Delta AEI\)\(\Delta DFI\) có:

\(\widehat{AEI}=\widehat{IFD}\) (c/m trên)

IE=IF(I là trung điểm của EF)

\(\widehat{AIE}=\widehat{DIF}\) (2 góc đối đỉnh)

=> \(\Delta AEI=\Delta DFI\left(g.c.g\right)\)

=> IA=IB( 2 cạnh tương ứng). Mà I nằm giữa A và B

=> I là trung điểm của AB

30 tháng 12 2016

bn ơi hình như sai đề

27 tháng 1 2021

*Tự vẽ hình

a) Có : DE//BC(GT)

            EF//AB(GT)

=> BDEF là hình bình hành

=> BD=EF

Mà : AD=DB(GT)

=> AD=EF (đccm)

b) Ta có : AD=DB(GT)

               DE//BC (GT)

=> DE là đường trung bình của tam giác ABC

=> AE=EC

Có : AE=EC(cmt)

       EF//AB(GT)

=> EF là đường trung bình của tam giác ABC

=> BF=FC

Mà : BF=DE(BDEF-hình bình hành)

=> FC=DE

 Xét tam giác ADE và EFC có :

   AE=EC(cmt)

   AD=EF(cm ý a)

   DE=FC(cmt)

=> Tam giác ADE=EFC(c.c.c)

c) Đã chứng minh ở ý b

27 tháng 1 2021

*Cách khác:

Giải:

Hình bạn tự vẽ nhé.

a) Ta có: BD // EF (vì AB /// EF)

=> Góc BDF = góc DFE (2 góc so le trong)

Vì DE // BC (gt)

nên góc EDF = góc BFD (2 góc so le trong)

Xét tam giác EDF và tam giác BDF có:

Góc BDF = góc DFE (chứng minh trên)

DF là cạnh chung

Góc EDF = góc BFD (chứng minh trên)

=> Tam giác DEF = tam giác FBD (g.c.g)

=> BD = EF ( 2 cạnh tương ứng)   (đpcm)

Mà BD = AD (vì D là trung điểm của AB)

=> AD = EF   (đpcm)

b) Ta có: AB // EF (gt)

=> Góc A = góc CEF (2 góc đồng vị)

Lại có: tam giác DEF = tam giác FBD (chứng minh trên)

=> Góc DEF = góc B (2 góc tương ứng)  (1)

Mà DE // BC (gt)

=> Góc DEF = góc CFE (2 góc so le trong)  (2)

     Góc ADE = góc B (2 góc đồng vị)

Từ (1), (2) => Góc B = góc CFE

Mà góc B = góc ADE (chứng minh trên)

=> Góc ADE = góc CFE 

Xét tam giác ADE và tam giác CEF có:

Góc CEF = góc A (chứng minh trên)

AD = EF (chứng minh trên)

Góc ADE = góc CFE (chứng minh trên)

=> Tam giác ADE = tam giác EFC (g.c.g)   (đpcm)

c) Ta có: tam giác ADE = tam giác EFC (chứng minh trên)

=> AE = CE (2 cạnh tương ứng)   (đpcm)

15 tháng 10 2018

Con tham khảo tại link dươi đây nhé:

Câu hỏi của Trần Thị Vân Ngọc - Toán lớp 8 - Học toán với OnlineMath

25 tháng 10 2018

xem rúi nhưng không có j hết