Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác AEDF có
AE//DF
AF//DE
Do đó: AEDF là hình bình hành
Suy ra: AD cắt EF tại trung điểm của mỗi đường
=>I là trung điểm của AD
Vì DF // AE (DF//AB; E \(\in AB\)) nên \(\widehat{AEF}=\widehat{EFD}\) (2 góc so le trong)
Hay \(\widehat{AEI}=\widehat{IFD}\) ( I \(\in EF\) )
Xét \(\Delta AEI\) và \(\Delta DFI\) có:
\(\widehat{AEI}=\widehat{IFD}\) (c/m trên)
IE=IF(I là trung điểm của EF)
\(\widehat{AIE}=\widehat{DIF}\) (2 góc đối đỉnh)
=> \(\Delta AEI=\Delta DFI\left(g.c.g\right)\)
=> IA=IB( 2 cạnh tương ứng). Mà I nằm giữa A và B
=> I là trung điểm của AB
*Tự vẽ hình
a) Có : DE//BC(GT)
EF//AB(GT)
=> BDEF là hình bình hành
=> BD=EF
Mà : AD=DB(GT)
=> AD=EF (đccm)
b) Ta có : AD=DB(GT)
DE//BC (GT)
=> DE là đường trung bình của tam giác ABC
=> AE=EC
Có : AE=EC(cmt)
EF//AB(GT)
=> EF là đường trung bình của tam giác ABC
=> BF=FC
Mà : BF=DE(BDEF-hình bình hành)
=> FC=DE
Xét tam giác ADE và EFC có :
AE=EC(cmt)
AD=EF(cm ý a)
DE=FC(cmt)
=> Tam giác ADE=EFC(c.c.c)
c) Đã chứng minh ở ý b
*Cách khác:
Giải:
Hình bạn tự vẽ nhé.
a) Ta có: BD // EF (vì AB /// EF)
=> Góc BDF = góc DFE (2 góc so le trong)
Vì DE // BC (gt)
nên góc EDF = góc BFD (2 góc so le trong)
Xét tam giác EDF và tam giác BDF có:
Góc BDF = góc DFE (chứng minh trên)
DF là cạnh chung
Góc EDF = góc BFD (chứng minh trên)
=> Tam giác DEF = tam giác FBD (g.c.g)
=> BD = EF ( 2 cạnh tương ứng) (đpcm)
Mà BD = AD (vì D là trung điểm của AB)
=> AD = EF (đpcm)
b) Ta có: AB // EF (gt)
=> Góc A = góc CEF (2 góc đồng vị)
Lại có: tam giác DEF = tam giác FBD (chứng minh trên)
=> Góc DEF = góc B (2 góc tương ứng) (1)
Mà DE // BC (gt)
=> Góc DEF = góc CFE (2 góc so le trong) (2)
Góc ADE = góc B (2 góc đồng vị)
Từ (1), (2) => Góc B = góc CFE
Mà góc B = góc ADE (chứng minh trên)
=> Góc ADE = góc CFE
Xét tam giác ADE và tam giác CEF có:
Góc CEF = góc A (chứng minh trên)
AD = EF (chứng minh trên)
Góc ADE = góc CFE (chứng minh trên)
=> Tam giác ADE = tam giác EFC (g.c.g) (đpcm)
c) Ta có: tam giác ADE = tam giác EFC (chứng minh trên)
=> AE = CE (2 cạnh tương ứng) (đpcm)
Bài 1:
Gọi độ dài quãng đườg AB là x
Theo đề, ta có:
\(\dfrac{x}{52}+\dfrac{x}{58}=5.5\)
=>x=150,8(km)
Ta có hình vẽ:
Ta có: AB // DF hay AE // DF
=> góc AEI = góc IFD (slt)
Ta có: AE // DE => góc EAI = góc IDF (slt)
Tổng ba góc trong tam giác = 1800
=> 1800 - AEI - EAI = 1800 - IFD - IDF
hay góc AIE = góc DIF (*)
Ta có: góc AEI = góc IFD (cmt) (**)
EI = FI (I là trung điểm EF) (***)
Từ (*),(**),(***) => tam giác AEI = tam giác DFI
=> AI = DI (2 cạnh tương ứng) (1)
Ta có: góc AIE = góc DIF (chứng minh trên)
Mà góc AIE + góc AIF = 1800 (kề bù)
=> góc DIF + góc AIF = 1800
hay AID = 1800
hay A,I,D thẳng hàng với nhau (2)
Từ (1),(2) => I là trung điểm của AD
-> Ta có đpcm.
a) - Xét tam giác ABD và tam giác AED, có:
+ Chung AD
+ góc BAD = góc EAD (AD là tia phân giác của góc BAC)
+ AB = AE (gt)
=> tam giác ABD = tam giác AED (cgc)
b) Ta có: BM=CM(M là trung điểm của BC)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: AB=AC(ΔACB cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
hay AM⊥BC(đpcm)
Vì DF // AE (DF//AB; E ) nên (2 góc so le trong)
Hay ( I )
Xét và có:
(c/m trên)
IE=IF(I là trung điểm của EF)
(2 góc đối đỉnh)
=>
=> IA=IB( 2 cạnh tương ứng). Mà I nằm giữa A và B
=> I là trung điểm của AB
Vì DF // AE (DF//AB; E ∈AB∈AB) nên ˆAEF=ˆEFDAEF^=EFD^ (2 góc so le trong)
Hay ˆAEI=ˆIFDAEI^=IFD^ ( I ∈EF∈EF )
Xét ΔAEIΔAEI và ΔDFIΔDFI có:
ˆAEI=ˆIFDAEI^=IFD^ (c/m trên)
IE=IF(I là trung điểm của EF)
ˆAIE=ˆDIFAIE^=DIF^ (2 góc đối đỉnh)
=> ΔAEI=ΔDFI(g.c.g)ΔAEI=ΔDFI(g.c.g)
=> IA=IB( 2 cạnh tương ứng). Mà I nằm giữa A và B
=> I là trung điểm của AB