K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tứ giác AEDF có

AE//DF

AF//DE

Do đó: AEDF là hình bình hành

Suy ra: AD cắt EF tại trung điểm của mỗi đường

=>I là trung điểm của AD

31 tháng 12 2016

Vì DF // AE (DF//AB; E \(\in AB\)) nên \(\widehat{AEF}=\widehat{EFD}\) (2 góc so le trong)

Hay \(\widehat{AEI}=\widehat{IFD}\) ( I \(\in EF\) )

Xét \(\Delta AEI\)\(\Delta DFI\) có:

\(\widehat{AEI}=\widehat{IFD}\) (c/m trên)

IE=IF(I là trung điểm của EF)

\(\widehat{AIE}=\widehat{DIF}\) (2 góc đối đỉnh)

=> \(\Delta AEI=\Delta DFI\left(g.c.g\right)\)

=> IA=IB( 2 cạnh tương ứng). Mà I nằm giữa A và B

=> I là trung điểm của AB

30 tháng 12 2016

bn ơi hình như sai đề

27 tháng 1 2021

*Tự vẽ hình

a) Có : DE//BC(GT)

            EF//AB(GT)

=> BDEF là hình bình hành

=> BD=EF

Mà : AD=DB(GT)

=> AD=EF (đccm)

b) Ta có : AD=DB(GT)

               DE//BC (GT)

=> DE là đường trung bình của tam giác ABC

=> AE=EC

Có : AE=EC(cmt)

       EF//AB(GT)

=> EF là đường trung bình của tam giác ABC

=> BF=FC

Mà : BF=DE(BDEF-hình bình hành)

=> FC=DE

 Xét tam giác ADE và EFC có :

   AE=EC(cmt)

   AD=EF(cm ý a)

   DE=FC(cmt)

=> Tam giác ADE=EFC(c.c.c)

c) Đã chứng minh ở ý b

27 tháng 1 2021

*Cách khác:

Giải:

Hình bạn tự vẽ nhé.

a) Ta có: BD // EF (vì AB /// EF)

=> Góc BDF = góc DFE (2 góc so le trong)

Vì DE // BC (gt)

nên góc EDF = góc BFD (2 góc so le trong)

Xét tam giác EDF và tam giác BDF có:

Góc BDF = góc DFE (chứng minh trên)

DF là cạnh chung

Góc EDF = góc BFD (chứng minh trên)

=> Tam giác DEF = tam giác FBD (g.c.g)

=> BD = EF ( 2 cạnh tương ứng)   (đpcm)

Mà BD = AD (vì D là trung điểm của AB)

=> AD = EF   (đpcm)

b) Ta có: AB // EF (gt)

=> Góc A = góc CEF (2 góc đồng vị)

Lại có: tam giác DEF = tam giác FBD (chứng minh trên)

=> Góc DEF = góc B (2 góc tương ứng)  (1)

Mà DE // BC (gt)

=> Góc DEF = góc CFE (2 góc so le trong)  (2)

     Góc ADE = góc B (2 góc đồng vị)

Từ (1), (2) => Góc B = góc CFE

Mà góc B = góc ADE (chứng minh trên)

=> Góc ADE = góc CFE 

Xét tam giác ADE và tam giác CEF có:

Góc CEF = góc A (chứng minh trên)

AD = EF (chứng minh trên)

Góc ADE = góc CFE (chứng minh trên)

=> Tam giác ADE = tam giác EFC (g.c.g)   (đpcm)

c) Ta có: tam giác ADE = tam giác EFC (chứng minh trên)

=> AE = CE (2 cạnh tương ứng)   (đpcm)

15 tháng 12 2022

Bài 1:

Gọi độ dài quãng đườg AB là x

Theo đề, ta có: 

\(\dfrac{x}{52}+\dfrac{x}{58}=5.5\)

=>x=150,8(km)

15 tháng 1 2017

Ta có hình vẽ:

A B C D E F I

Ta có: AB // DF hay AE // DF

=> góc AEI = góc IFD (slt)

Ta có: AE // DE => góc EAI = góc IDF (slt)

Tổng ba góc trong tam giác = 1800

=> 1800 - AEI - EAI = 1800 - IFD - IDF

hay góc AIE = góc DIF (*)

Ta có: góc AEI = góc IFD (cmt) (**)

EI = FI (I là trung điểm EF) (***)

Từ (*),(**),(***) => tam giác AEI = tam giác DFI

=> AI = DI (2 cạnh tương ứng) (1)

Ta có: góc AIE = góc DIF (chứng minh trên)

Mà góc AIE + góc AIF = 1800 (kề bù)

=> góc DIF + góc AIF = 1800

hay AID = 1800

hay A,I,D thẳng hàng với nhau (2)

Từ (1),(2) => I là trung điểm của AD

-> Ta có đpcm.

31 tháng 12 2017

bài làm tốt quá bạn ê

thank bạn nhìu !!!

5 tháng 5 2023

a) - Xét tam giác ABD và tam giác AED, có:
    + Chung AD
    + góc BAD = góc EAD (AD là tia phân giác của góc BAC)
    + AB = AE (gt)
=> tam giác ABD = tam giác AED (cgc)

5 tháng 5 2023

câu b) hình như điều cần chứng minh nhầm rồi hay sao ý

b) Ta có: BM=CM(M là trung điểm của BC)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: AB=AC(ΔACB cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của BC

hay AM⊥BC(đpcm)

9 tháng 11 2017
    

Vì DF // AE (DF//AB; E ∈AB) nên AEF^=EFD^ (2 góc so le trong)

Hay AEI^=IFD^ ( I ∈EF )

Xét ΔAEI và ΔDFI có:

AEI^=IFD^ (c/m trên)

IE=IF(I là trung điểm của EF)

AIE^=DIF^ (2 góc đối đỉnh)

=> ΔAEI=ΔDFI(g.c.g)

=> IA=IB( 2 cạnh tương ứng). Mà I nằm giữa A và B

=> I là trung điểm của AB

    
9 tháng 11 2017

  

Vì DF // AE (DF//AB; E ∈AB∈AB) nên ˆAEF=ˆEFDAEF^=EFD^ (2 góc so le trong)

Hay ˆAEI=ˆIFDAEI^=IFD^ ( I ∈EF∈EF )

Xét ΔAEIΔAEI và ΔDFIΔDFI có:

ˆAEI=ˆIFDAEI^=IFD^ (c/m trên)

IE=IF(I là trung điểm của EF)

ˆAIE=ˆDIFAIE^=DIF^ (2 góc đối đỉnh)

=> ΔAEI=ΔDFI(g.c.g)ΔAEI=ΔDFI(g.c.g)

=> IA=IB( 2 cạnh tương ứng). Mà I nằm giữa A và B

=> I là trung điểm của AB