K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2023

\(\left(x+2\right)^3-16\left(x+2\right)=0\)

\(\Rightarrow\left(x+2\right)\left[\left(x+2\right)^2-16\right]=0\)

\(\Rightarrow\left(x+2\right)\left(x+2-4\right)\left(x+2+4\right)=0\)

\(\Rightarrow\left(x+2\right)\left(x-2\right)\left(x+6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x-2=0\\x+6=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=2\\x=-6\end{matrix}\right.\)

Vậy \(S=\left\{-2;2;-6\right\}\)

\(2x^3-6x^2+12x-8=0\)

\(\Rightarrow2x^3-2x^23+3.2^2-2^3=0\)

\(\Rightarrow\left(x-2\right)^3=0\)

\(\Rightarrow x-2=0\)

\(\Rightarrow x=2\)

2:

\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)

B=(x1+x2)^2-2x1x2

=3^2-2*(-7)

=9+14=23

C=căn (x1+x2)^2-4x1x2

=căn 3^2-4*(-7)=căn 9+28=căn 27

D=(x1^2+x2^2)^2-2(x1x2)^2

=23^2-2*(-7)^2

=23^2-2*49=431

D=9x1x2+3(x1^2+x2^2)+x1x2

=10x1x2+3*23

=69+10*(-7)=-1

=>(9x^2+24x-6x-16)(x^2+2x+1)=-16

=>(9x^2+18x-16)(x^2+2x+1)=-16

=>(9x^2+18x+9-25)(x^2+2x+1)=-16

=>[9(x+1)^2-25](x+1)^2=-16

=>9(x+1)^4-25(x+1)^2+16=0

Đặt (x+1)^2=a

=>9a^2-25a+16=0

=>a=1 hoặc a=16/9

=>(x+1)^2=1 hoặc (x+1)^2=16/9

=>\(x\in\left\{0;-2;\dfrac{1}{3};-\dfrac{7}{3}\right\}\)

3 tháng 2 2023

CẢM ƠN NHÌU NHA

8 tháng 2 2021

( x + 2 ) . ( x + 4 ) . ( x + 6 ) . ( x + 8 ) + 16 = 0 .

( x + 2 ) . ( x + 4 ) . ( x + 6 ) . ( x + 8 )         = - 16 .

x mũ 4 . ( 2 + 4 + 6 + 8 )                             = - 16 .

x mũ 4 . 20                                                  = - 16 .

x mũ 4                                                         = - 4 / 5 .

                                                                      4

x                                                                  = √ - 4 / 5 .

14 tháng 3 2023

\(\dfrac{7x+11}{2}-\dfrac{5x-3}{4}=\dfrac{x-6}{8}+\dfrac{3+x}{16} \)

\(8\left(7x+11\right)-4\left(5x-3\right)=2\left(x-6\right)+\left(x+3\right)\)

\(56x+88-20x+12=2x-12+x+3\)

\(56x-20x-2x-x=-12+3-88-12\)

\(33x=-109\)

\(x=\dfrac{-109}{33}\)

21 tháng 10 2016

Đặt \(\hept{\begin{cases}\sqrt{4+x}=a\\\sqrt{4-x}=b\end{cases}}\)

Ta có 

\(\hept{\begin{cases}a^2+ab+4-5a-b=0\left(1\right)\\a^2+b^2=8\left(2\right)\end{cases}}\)

(1) <=> (a2 - a) + (4 - 4a) + (ab - b) = 0

<=> (a - 1)(a - 4 + b) = 0

<=> \(\orbr{\begin{cases}a=1\left(3\right)\\a-4+b=0\left(4\right)\end{cases}}\)

Thế (3) vào (2) ta được

\(\hept{\begin{cases}a=1\\b=\sqrt{7}\end{cases}}\)

=> x = - 3

Thế (4) vào (2) ta được

\(\hept{\begin{cases}a=2\\b=2\end{cases}}\)

=> x = 0

3 tháng 8 2016

Đặt x-6=a

=> x-8=a-2

Ta có: a4+(a-2)4=16

=> a4+a4+16a2+16+8a2-32a-8a2=16

=> 2a4+24a2-32a-8a3=0

=> 2a(a3+12a-16-4a2)=0

=> a( a3-2a2-2a2+4a+8a-16)=0

=> a( a-2)(a2-2a+8)=0

Vì a2-2a+8 = a2-2a+1+7=(a-1)2+7 \(\ge\)0 với mọi a.

=> a = 0 hoặc a-2 =0

=> a=0 hoặc a= 2

=> x= 6 hoặc x=8

Vậy phương trình có nghiệm x= 6 hoặc x=8.

24 tháng 4 2022

1.a)|−7x|=3x+16

Vì |-7x| ≥ 0  nên 3x+16 ≥ 0 ⇔ x ≥ \(\dfrac{-16}{3}\)    (*)

Với đk (*), ta có: |-7x|=3x+16

\(\left[\begin{array}{} -7x=3x+16\\ -7x=-3x-16 \end{array} \right.\) ⇔  \(\left[\begin{array}{} -7x-3x=16\\ -7x+3x=-16 \end{array} \right.\)

⇔ \(\left[\begin{array}{} x=-1,6 (t/m)\\ x= 4 (t/m) \end{array} \right.\)

b) \(\dfrac{x-1}{x+2}\) - \(\dfrac{x}{x-2}\) = \(\dfrac{5x-8}{x^2-4}\)

⇔ \(\dfrac{(x-1)(x-2)}{x^2-4}\) - \(\dfrac{x(x+2)}{x^2-4}\) = \(\dfrac{5x-8}{x^2-4}\)

⇒ x- 2x - x + 2 - x- 2x = 5x - 8  

⇔ -5x - 5x = -8 - 2

⇔ -10x = -10

⇔ x=1

2.7x+5 < 3x−11

⇔ 7x - 3x < -11 - 5

⇔ 4x < -16

⇔ x < -4

bạn tự biểu diễn trên trục số nha !

 

 

1 tháng 11 2021

\(Đk:x\ge2\\ PT\Leftrightarrow\dfrac{10\sqrt{x-2}-\sqrt{x-2}+1}{2}=6\sqrt{x-2}\\ \Leftrightarrow9\sqrt{x-2}+1=12\sqrt{x-2}\\ \Leftrightarrow\sqrt{x-2}=\dfrac{1}{3}\Leftrightarrow x-2=\dfrac{1}{9}\\ \Leftrightarrow x=\dfrac{19}{9}\left(tm\right)\)