K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

Đặt x-6=a

=> x-8=a-2

Ta có: a4+(a-2)4=16

=> a4+a4+16a2+16+8a2-32a-8a2=16

=> 2a4+24a2-32a-8a3=0

=> 2a(a3+12a-16-4a2)=0

=> a( a3-2a2-2a2+4a+8a-16)=0

=> a( a-2)(a2-2a+8)=0

Vì a2-2a+8 = a2-2a+1+7=(a-1)2+7 \(\ge\)0 với mọi a.

=> a = 0 hoặc a-2 =0

=> a=0 hoặc a= 2

=> x= 6 hoặc x=8

Vậy phương trình có nghiệm x= 6 hoặc x=8.

2:

\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)

B=(x1+x2)^2-2x1x2

=3^2-2*(-7)

=9+14=23

C=căn (x1+x2)^2-4x1x2

=căn 3^2-4*(-7)=căn 9+28=căn 27

D=(x1^2+x2^2)^2-2(x1x2)^2

=23^2-2*(-7)^2

=23^2-2*49=431

D=9x1x2+3(x1^2+x2^2)+x1x2

=10x1x2+3*23

=69+10*(-7)=-1

28 tháng 8 2021

a) \(x^4-x^2+\dfrac{1}{4}-\dfrac{225}{4}=0\\ \left(x^2-\dfrac{1}{2}\right)^2-\dfrac{15}{2}^2=0\\ \left(x+7\right)\left(x-8\right)=0\\ \left[{}\begin{matrix}x=8\\x=-7\end{matrix}\right.\)

Vậy x = 8 hoặc x = -7

 

a: Ta có: \(x^4-x^2-56=0\)

\(\Leftrightarrow x^4-8x^2+7x^2-56=0\)

\(\Leftrightarrow\left(x^2-8\right)\left(x^2+7\right)=0\)

\(\Leftrightarrow x^2-8=0\)

hay \(x\in\left\{2\sqrt{2};-2\sqrt{2}\right\}\)

21 tháng 10 2016

Đặt \(\hept{\begin{cases}\sqrt{4+x}=a\\\sqrt{4-x}=b\end{cases}}\)

Ta có 

\(\hept{\begin{cases}a^2+ab+4-5a-b=0\left(1\right)\\a^2+b^2=8\left(2\right)\end{cases}}\)

(1) <=> (a2 - a) + (4 - 4a) + (ab - b) = 0

<=> (a - 1)(a - 4 + b) = 0

<=> \(\orbr{\begin{cases}a=1\left(3\right)\\a-4+b=0\left(4\right)\end{cases}}\)

Thế (3) vào (2) ta được

\(\hept{\begin{cases}a=1\\b=\sqrt{7}\end{cases}}\)

=> x = - 3

Thế (4) vào (2) ta được

\(\hept{\begin{cases}a=2\\b=2\end{cases}}\)

=> x = 0

1 tháng 2 2021

cấy pt dạng ni lớp 8 học rồi mà :v 

chỉ là thêm công thức nghiệm vào thôi ._.

1. ( x + 2 )( x + 4 )( x + 6 )( x + 8 ) + 16 = 0

<=> [ ( x + 2 )( x + 8 ) ][ ( x + 4 )( x + 6 ) ] + 16 = 0

<=> ( x2 + 10x + 16 )( x2 + 10x + 24 ) + 16 = 0

Đặt t = x2 + 10x + 16

pt <=> t( t + 8 ) + 16 = 0

<=> t2 + 8t + 16 = 0

<=> ( t + 4 )2 = 0

<=> ( x2 + 10x + 16 + 4 )2 = 0

<=> ( x2 + 10x + 20 )2 = 0

=> x2 + 10x + 20 = 0

Δ' = b'2 - ac = 25 - 20 = 5

Δ' > 0 nên phương trình có hai nghiệm phân biệt

\(x_1=\frac{-b'+\sqrt{\text{Δ}'}}{a}=-5+\sqrt{5}\)

\(x_2=\frac{-b'-\sqrt{\text{Δ}'}}{a}=-5-\sqrt{5}\)

Vậy ...

2. ( x + 1 )( x + 2 )( x + 3 )( x + 4 ) - 24 = 0

<=> [ ( x + 1 )( x + 4 ) ][ ( x + 2 )( x + 3 ) ] - 24 = 0

<=> ( x2 + 5x + 4 )( x2 + 5x + 6 ) - 24 = 0

Đặt t = x2 + 5x + 4

pt <=> t( t + 2 ) - 24 = 0

<=> t2 + 2t - 24 = 0

<=> ( t - 4 )( t + 6 ) = 0

<=> ( x2 + 5x + 4 - 4 )( x2 + 5x + 4 + 6 ) = 0

<=> x( x + 5 )( x2 + 5x + 10 ) = 0

Vì x2 + 5x + 10 có Δ = -15 < 0 nên vô nghiệm

=> x = 0 hoặc x = -5

Vậy ...

3. ( x - 1 )( x - 3 )( x - 5 )( x - 7 ) - 20 = 0

<=> [ ( x - 1 )( x - 7 ) ][ ( x - 3 )( x - 5 ) ] - 20 = 0

<=> ( x2 - 8x + 7 )( x2 - 8x + 15 ) - 20 = 0

Đặt t = x2 - 8x + 7

pt <=> t( t + 8 ) - 20 = 0

<=> t2 + 8t - 20 = 0

<=> ( t - 2 )( t + 10 ) = 0

<=> ( x2 - 8x + 7 - 2 )( x2 - 7x + 8 + 10 ) = 0

<=> ( x2 - 8x + 5 )( x2 - 7x + 18 ) = 0

<=> \(\orbr{\begin{cases}x^2-8x+5=0\\x^2-7x+18=0\end{cases}}\)

+) x2 - 8x + 5 = 0

Δ' = b'2 - ac = 16 - 5 = 11

Δ' > 0 nên có hai nghiệm phân biệt 

\(x_1=\frac{-b'+\sqrt{\text{Δ}'}}{a}=-4+\sqrt{11}\)

\(x_2=\frac{-b'+\sqrt{\text{Δ}'}}{a}=-4-\sqrt{11}\)

+) x2 - 7x + 18 = 0

Δ = b2 - 4ac = 49 - 72 = -23 < 0 => vô nghiệm

Vậy ...

1 tháng 2 2021

1.(x+2) . (x+4) . (x+6) . (x+8) + 16 = 0

(x+2) . (x+4) . (x+6) . (x+8)         = -16

x. ( 2 + 4 + 6 + 8 )                    = -16

x. 20                                         = -16

x4                                                          = -16 : 20 

x                                               = -4 / 5       

x                                                  = \(\sqrt[4]{\frac{-4}{5}}\)

Tk cho mình nhé !!

23 tháng 12 2023

ĐKXĐ: x>=-1

Sửa đề: \(6\sqrt{x+1}-\sqrt{25x+25}+8\sqrt{\dfrac{x+1}{4}}=10\)

=>\(6\sqrt{x+1}-5\sqrt{x+1}+8\cdot\dfrac{\sqrt{x+1}}{2}=10\)

=>\(\sqrt{x+1}+4\sqrt{x+1}=10\)

=>\(5\sqrt{x+1}=10\)

=>\(\sqrt{x+1}=2\)

=>x+1=4

=>x=3(nhận)

5 tháng 3 2021

a) Đặt x4 = t ( t ≥ 0 )

pt <=> t2 - 17t + 16 = 0 (*)

Dễ thấy (*) có a + b + c = 0 nên có hai nghiệm t1 = 1 ( tm ) hoặc t2 = 16 ( tm )

=> x4 = 1 hoặc x4 = 16

=> x = ±1 hoặc x = ±2

Vậy ...

5 tháng 3 2021

b) Đặt t = x3

pt <=> t2 - 4t + 3 = 0 (*)

Dễ thấy (*) có a + b + c = 0 nên có hai nghiệm phân biệt t1 = 1 ; t2 = 3

=> x3 = 1 hoặc x3 = 3

=> x = 1 hoặc x = \(\sqrt[3]{3}\)

23 tháng 10 2016

\(\sqrt{x+4}+\sqrt{x-4}=2\left(\sqrt{x^2-16}+x-6\right)\)

Đk:\(x\ge4\)

\(\Leftrightarrow\sqrt{x+4}+\sqrt{x-4}=\left(\sqrt{x+4}+\sqrt{x-4}\right)^2-12\)

Đặt \(t=\sqrt{x+4}+\sqrt{x-4}\left(t>0\right)\)ta có:

\(t^2-t-12=0\)

\(\Leftrightarrow\left(t-4\right)\left(t+3\right)=0\Leftrightarrow\orbr{\begin{cases}t=-3\left(loai\right)\\t=4\left(tm\right)\end{cases}}\)(do t>0)

  • Nếu \(t=4\Leftrightarrow\sqrt{x+4}+\sqrt{x-4}=4\)

\(\Leftrightarrow2x+2\sqrt{\left(x+4\right)\left(x-4\right)}=16\)

\(\Leftrightarrow\sqrt{x+4}\sqrt{x-4}=8-x\)

\(\Leftrightarrow\hept{\begin{cases}4\le x\le8\\x^2-16=\left(8-x\right)^2\end{cases}}\)\(\Leftrightarrow x=5\)

Vậy x=5 là nghiệm của pt

a: ĐKXĐ: x>=-2

\(PT\Leftrightarrow3\cdot3\sqrt{x+2}=\dfrac{1}{2}\cdot2\sqrt{x+2}+16\)

=>\(9\sqrt{x+2}-\sqrt{x+2}=16\)

=>\(8\sqrt{x+2}=16\)

=>\(\sqrt{x+2}=2\)

=>x+2=4

=>x=2

b: ĐKXĐ: \(x\in R\)

\(5+\sqrt{x^2-4x+4}=9\)

=>\(\left|x-2\right|=4\)

=>x-2=4 hoặc x-2=-4

=>x=6 hoặc x=-2