K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2018

bạn ơi đề khó nhìn vậy  

28 tháng 1 2018
bạn giúp mk vs đk k bạn
27 tháng 7 2020

2(x + y) + xy = x2 + y2

<=> x2 + y2 - 2x - 2y - xy = 0

<=> 4x2 + 4y2 - 4xy - 8x - 8y = 0

<=> (4x2 - 4xy + y2) - 4(2x - y) + 4 + 3y2 - 12y + 12 - 16 = 0

<=> (2x - y)2 - 4(2x - y) + 4 + 3(y2 - 4y + 4) = 16

<=> (2x - y - 2)2 = 16 - 3(y - 2)2 (1)

Do VT = (2x - y - 2)2 \(\ge\)\(\forall\)x;y

=> VP = 16 - 3(y - 2)2 \(\ge\)

=> 3(y - 2)2 \(\le\) 16

=> (y - 2)2 \(\le\)16/3

Do y nguyên dương và (y - 2)2 là số chính phương => (y - 2)2 \(\in\){0; 1; 4}

=> y - 2 \(\in\){0; 1; -1; 2; -2}

Lập bảng:

y - 2 0 1 -1 2 -2
  y 2 3 1 4 0

Với y = 2 , khi đó pt (1) trở thành: (2x - 2 - 2)2 = 16 - 3.0

<=> (2x - 4)2 = 16

<=> \(\orbr{\begin{cases}2x-4=4\\2x-4=-4\end{cases}}\)

<=> \(\orbr{\begin{cases}x=4\\x=0\end{cases}}\)

Với y = 3 .... (tự thay vào tìm x)

23 tháng 4 2020

x2-y2=y+1

<=>  4x2-4y2=4y+4

<=>4x2-(4y2+4y+1)=3

<=>(2x-2y-1)(2x+2y+1)=3=1.3  (do 2x+2y+1>2x-2y-1>0)

<=>2x-2y-1=1 và 2x+2y+1=3

<=>x-y=1 và x+y=1

=>x=1 và y=0(thỏa mãn)

Vậy x=1 và y=0

19 tháng 4 2020

ta có : 2x+1 là số chia hết cho 2 dư 1

=> y2 chia  hết cho 2 dư 1

=>y=2k+1 =>y2=4k2+1

khi đó : 2x+1=4k2+1

=>2x=4k2

tại 2x=4k2 và y2=4k2+1 thì thỏa mãn pt đã cho

vậy đáp số : \(\hept{\begin{cases}2^x=4k^2\\y^2=4k^2+1\end{cases}}\)với k là số nguyên tùy ý

6 tháng 1 2017

\(x\) mà chẵn thì bài toán hoá ra là tìm 2 số chính phương lệch nhau 3 đơn vị (là 1 với 4, trường hợp này bạn tự làm nhé)

\(x\) lẻ thì \(2^x\) đồng dư -1 (mod 3) suy ra \(y^2\) đồng dư -1 (mod 3) (vô lí)

16 tháng 1 2017

\(2x^2-xy-y^2-8=0\Leftrightarrow\left(x^2-xy\right)+\left(x^2-y^2\right)=8\)

\(\Leftrightarrow x\left(x-y\right)+\left(x-y\right)\left(x+y\right)=8\)

\(\Leftrightarrow\left(x+y\right)\left(2x+y\right)=8\)

Ta có bảng sau:

x+y-8-4-2-11248
2x+y-1-2-4-88421
x72-2-772-2-7
y-15-606-60615

Bạn tự kết luận 

17 tháng 1 2017

thanks nhiều ạ