K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2018

bạn ơi đề khó nhìn vậy  

28 tháng 1 2018
bạn giúp mk vs đk k bạn
27 tháng 7 2020

2(x + y) + xy = x2 + y2

<=> x2 + y2 - 2x - 2y - xy = 0

<=> 4x2 + 4y2 - 4xy - 8x - 8y = 0

<=> (4x2 - 4xy + y2) - 4(2x - y) + 4 + 3y2 - 12y + 12 - 16 = 0

<=> (2x - y)2 - 4(2x - y) + 4 + 3(y2 - 4y + 4) = 16

<=> (2x - y - 2)2 = 16 - 3(y - 2)2 (1)

Do VT = (2x - y - 2)2 \(\ge\)\(\forall\)x;y

=> VP = 16 - 3(y - 2)2 \(\ge\)

=> 3(y - 2)2 \(\le\) 16

=> (y - 2)2 \(\le\)16/3

Do y nguyên dương và (y - 2)2 là số chính phương => (y - 2)2 \(\in\){0; 1; 4}

=> y - 2 \(\in\){0; 1; -1; 2; -2}

Lập bảng:

y - 2 0 1 -1 2 -2
  y 2 3 1 4 0

Với y = 2 , khi đó pt (1) trở thành: (2x - 2 - 2)2 = 16 - 3.0

<=> (2x - 4)2 = 16

<=> \(\orbr{\begin{cases}2x-4=4\\2x-4=-4\end{cases}}\)

<=> \(\orbr{\begin{cases}x=4\\x=0\end{cases}}\)

Với y = 3 .... (tự thay vào tìm x)

6 tháng 1 2017

\(x\) mà chẵn thì bài toán hoá ra là tìm 2 số chính phương lệch nhau 3 đơn vị (là 1 với 4, trường hợp này bạn tự làm nhé)

\(x\) lẻ thì \(2^x\) đồng dư -1 (mod 3) suy ra \(y^2\) đồng dư -1 (mod 3) (vô lí)

7 tháng 11 2019

b/ \(2^x+2^y+2^z=552\)

\(\Leftrightarrow2^x\left(1+2^{y-x}+2^{z-x}\right)=2^3.69\)

\(\Leftrightarrow\hept{\begin{cases}x=3\\1+2^{y-x}+2^{z-x}=69\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3\\2^y+2^z=544\left(1\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow2^y\left(1+2^{z-y}\right)=2^5.17\)

\(\Leftrightarrow\hept{\begin{cases}y=5\\1+2^{z-y}=17\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=5\\z=9\end{cases}}\)

Vậy \(x=3;y=5;z=9\)

7 tháng 11 2019

a/ Dễ thấy: \(z>x,y\)

Xét \(x>y\)

\(\Rightarrow2^x\left(1+2^{y-x}-2^{z-x}\right)=0\)

Loại vì \(2^x\left(1+2^{y-x}-2^{z-x}\right)< 0\)

Tương tự cho trường hợp \(x< y\)

Xét \(x=y\)

\(2^x+2^y=2^z\)

\(\Leftrightarrow2^{x+1}=2^z\)

\(\Leftrightarrow x+1=z\)

Vậy nghiệm là: \(x=y=z-1\)

24 tháng 1 2020

ngu như chó

mày lại thích đi gây sự nữa à Vũ Lan Anh