Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b/ \(2^x+2^y+2^z=552\)
\(\Leftrightarrow2^x\left(1+2^{y-x}+2^{z-x}\right)=2^3.69\)
\(\Leftrightarrow\hept{\begin{cases}x=3\\1+2^{y-x}+2^{z-x}=69\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3\\2^y+2^z=544\left(1\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow2^y\left(1+2^{z-y}\right)=2^5.17\)
\(\Leftrightarrow\hept{\begin{cases}y=5\\1+2^{z-y}=17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=5\\z=9\end{cases}}\)
Vậy \(x=3;y=5;z=9\)
a/ Dễ thấy: \(z>x,y\)
Xét \(x>y\)
\(\Rightarrow2^x\left(1+2^{y-x}-2^{z-x}\right)=0\)
Loại vì \(2^x\left(1+2^{y-x}-2^{z-x}\right)< 0\)
Tương tự cho trường hợp \(x< y\)
Xét \(x=y\)
\(2^x+2^y=2^z\)
\(\Leftrightarrow2^{x+1}=2^z\)
\(\Leftrightarrow x+1=z\)
Vậy nghiệm là: \(x=y=z-1\)
<=>x^2-y^2+x^2-xy=8
<=>(x-y)(2x+y)=8
2x+y>x-y
tự xét tiếp
lớp 9 kém thế
Trả lời
Giả sử x≥y≥z⇒x2+y2+z2>2xy⇒z>2x≥y≥z⇒x2+y2+z2>2xy⇒z>2
Với z=3⇒x2+y2⋮3⇒x2+y2⋮3 mà x,y là số nguyên tố nên chỉ có thể là x=y=3
Với z>3 vì x,y,z là các số nguyên tố khác 3 nên VT chia hết cho 3 đồng thời VP không chia hết cho 3 PT vô nghiệm
Vây PT chỉ có bộ nghiệm (x,y,z)=(3,3,3)
2/ a/ \(y\left(x-1\right)=x^2+2\)
\(\Leftrightarrow y\left(x-1\right)+1-x^2=3\)
\(\Leftrightarrow\left(x-1\right)\left(y-1-x\right)=3\)
Làm tiếp nhé
b/ \(x^2+xy+y^2=x^2y^2\)
\(\Leftrightarrow4x^2+4xy+4y^2=4x^2y^2\)
\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)-\left(4x^2y^2+4xy+1\right)=-1\)
\(\Leftrightarrow\left(2x+2y\right)^2-\left(2xy+1\right)^2=-1\)
\(\Leftrightarrow\left(2x+2y+2xy+1\right)\left(2x+2y-2xy-1\right)=-1\)
Làm tiếp nhé
1/ \(x^2+x+19=z^2\)
\(\Leftrightarrow4x^2+4x+76=4z^2\)
\(\Leftrightarrow\left(2x+1\right)^2-4z^2=-75\)
\(\Leftrightarrow\left(2x+1-2z\right)\left(2x+1+2z\right)=-75\)
Tới đây đơn giản rồi làm tiếp đi nhé