Tìm nghiệm tự nhiên : \(3^x+7=y^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Ta có: \(48751-\left(10425+y\right)=3828:12\)
\(\Leftrightarrow y+10425=48751-319=48432\)
hay y=38007
b: Ta có: \(\left(2367-y\right)-\left(2^{10}-7\right)=15^2-20\)
\(\Leftrightarrow2367-y=1222\)
hay y=1145
Bài 2:
Ta có: \(8\cdot6+288:\left(x-3\right)^2=50\)
\(\Leftrightarrow288:\left(x-3\right)^2=2\)
\(\Leftrightarrow\left(x-3\right)^2=144\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=12\\x-3=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=15\\x=-9\end{matrix}\right.\)
Xét x=0 ta được:
\(y^2=3+2^0=4\Leftrightarrow y=2\)(do, y Tự nhiên)
Xét x=1: ta có \(y^2=3+2=5\)không có nghiệm Tự nhiên thỏa mãn
Xét x>1: ta có:
\(2^x\ge4\Rightarrow2^x⋮4\)
Do đó: \(2^x+3\)chia 4 dư 3
Mà \(y^2\)là số chính phương chia 4 chỉ dư 0 hoặc 1
Nên \(\forall x>1,\)pt không vó nghiệm tự nhiên thỏa mãn
KL: Vậy (x,y)=(0,2) là nghiệm duy nhất
\(x\) mà chẵn thì bài toán hoá ra là tìm 2 số chính phương lệch nhau 3 đơn vị (là 1 với 4, trường hợp này bạn tự làm nhé)
\(x\) lẻ thì \(2^x\) đồng dư -1 (mod 3) suy ra \(y^2\) đồng dư -1 (mod 3) (vô lí)