\(3^x+7=y^3\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2019

Làm hơi tắt nhé

  • Nếu \(y=0\Rightarrow x^2=65\Rightarrow x\notin Z\)
  • Nếu \(y>1\Rightarrow x^2+y^3-3y^2=65-3y\Leftrightarrow x^2+\left(y^3-3y^2+3y-1\right)=64\Leftrightarrow x^2-\left(y-1\right)^3=64\)
  • Mà \(x;y-1\in N;64=0^2+4^3=8^2+0^3\)
  • \(Th1:\hept{\begin{cases}x=0\\y-1=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=5\end{cases}}}\)
  • \(Th2:\hept{\begin{cases}x=8\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=8\\y=1\end{cases}}}\)
  • Thử lại ta có nghiệm nguyên là : \(\left(0;5\right),\left(8;1\right)\)
22 tháng 10 2019

<=> x2  = 64 - (y-1)3 \(\ge0< =>4\ge y-1< =>y\le5.\)

y=5 => x=0 (thỏa mãn); y=4 => x2 = 37 (loại); y=3 => x2 =56 (loại); y= 2 => x2 = 63 loại; y=1 => x= 8; y=0 => x= 65 loại

vậy các nghiệm (x;y) = (0;5); (1;8)

21 tháng 11 2016

Đề ngu

24 tháng 11 2016

\(\sqrt{x^2+12}+5=3x\)\(+\sqrt{x^2+5}\)

11 tháng 6 2019

Nếu y=0 thì pt trở thành:\(x^2-5x+6=0\)

\(\Leftrightarrow x^2-2x-3x+6=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow x=0;x=3\)

Nếu y=1 thì pt trở thành:\(x^2-5x+4=0\)

\(\Leftrightarrow x^2-x-4x+4=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-4\right)=0\)

\(\Leftrightarrow x=1;x=4\)

Nếu \(y\ge2\Rightarrow3^y⋮9\)

Do x là số tự nhiên nên x có dạng \(3k;3k+1;3k+2\) với \(k\in N\)

Với \(x=3k\) thì pt trở thành:

\(\left(3k\right)^2+5\cdot3k+7=3^y\left(KTM\right)\) vì VT không chia hết cho 3.

Với \(x=3k+1\) thì pt trở thành:

\(\left(3k+1\right)^2+5\cdot\left(3k+1\right)+7=3^y\)

\(\Leftrightarrow9k^2-9k+3=3^y\left(KTM\right)\) vì VT không chia hết cho 9.

Với \(x=3k+2\) thì pt trở thành:

\(\left(3k+2\right)^2+5\cdot\left(3k+2\right)+7=3^y\)

\(\Leftrightarrow9k^2-3k+1=3^y\left(KTM\right)\) vì VT không chia hết cho 3.

Vậy các cặp số tự nhiên \(\left(x;y\right)\) thỏa mãn là:\(\left(2;0\right);\left(3;0\right);\left(1;1\right);\left(4;1\right)\)

6 tháng 7 2018

1/

a,\(\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{5}{-2}=\frac{-5}{2}\)

b, \(x^2+y^2=\left(x+y\right)^2-2xy=5^2-2.\left(-2\right)=25+4=29\)

c,\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=5^3-3.\left(-2\right).5=125+30=155\)

d,thiếu dữ kiện

2.

Ta có: a chia 7 dư 3 => a=7k+3 (k thuộc N)

=>\(a^2=\left(7k+3\right)\left(7k+3\right)=7k\left(7k+3\right)+3\left(7k+3\right)=7k\left(7k+3\right)+3.7k+3.3=7k\left(7k+3\right)+3.7k+7+2\)chia 7 dư 2

Vậy...

6 tháng 7 2018

M nhanh thật đấy hương

10 tháng 6 2019

Thử cách này của em xem ạ... lâu rồi không làm dạng này nên không rành lắm :(

Với x = 0 thì y = 1 (TM)

Với x = 1 thì y = 1 (TM)

Ta sẽ chứng minh với x > 2 thì không tồn tại y. (*) Thật vậy:

Với x = 2 thì y = 3 \(\Rightarrow\) (*) đúng với x =2

Giả sử (*) đúng với x = k > 2; \(k\inℕ\). Tức là \(1!+2!+3!+...+k!\ne y^3\)

Cần chứng minh nó đúng với x = k + 1.Tức là chứng minh \(1!+2!+3!+...+k!+\left(k+1\right)!\ne y^3\) (1)

\(\Leftrightarrow\left(1!+2!+3!+...+k!\right)-y^3+\left(k+1\right)!\ne0\)

Theo giả thiết quy nạp suy ra \(\left(1!+2!+3!+...+k!\right)-y^3+\left(k+1\right)!\ne y^3-y^3+\left(k+1\right)!=\left(k+1\right)!>0\forall k\inℕ\)

Do vậy (1) đúng nên theo nguyên lí quy nạp suy ra (*) đúng.

Vậy (x;y) = { (0;1) ; (1;1) }

10 tháng 6 2019

Với \(x=0\Rightarrow y=1\left(TM\right)\)

Với \(x=1\Rightarrow y=1\left(TM\right)\)

Với \(x=2\Rightarrow y^3=1+1\cdot2=3\Rightarrow y=\sqrt[3]{3}\left(KTM\right)\)

Với \(x=3\Rightarrow y^3=1+1\cdot2+1\cdot2\cdot3=9\Rightarrow y=\sqrt[3]{9}\left(KTM\right)\)

Với \(x=4\Rightarrow y^3=1+1\cdot2+1\cdot2\cdot3+1\cdot2\cdot3\cdot4=33\Rightarrow y=\sqrt[3]{33}\left(KTM\right)\)

Với \(x=5\Rightarrow y^3=1+1\cdot2+1\cdot2\cdot3+1\cdot2\cdot3\cdot4+1\cdot2\cdot3\cdot4\cdot5=33+120\) có tận cùng là 3.

Cứ tiếp tục như vậy thì  \(y^3\) luôn có dạng \(33+\overline{...0}\).

Mà lập phương của 1 số tự nhiên thì không tận cùng là 3 nên \(\left(x;y\right)=\left\{0;1\right\};\left\{1;1\right\}\)