Tìm chữ số tận cùng
a,8675
b,437
c,440
d,948
e,961
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4^{961}+23^{2005}-19^{1997}\)
\(=4^{960}.4+23^{2004}.23-19^{1996}.19\)
\(=\left(4^2\right)^{480}.4+\left(23^4\right)^{501}.23-\left(19^2\right)^{998}.19\)
\(=\overline{\left(...6\right)}^{480}.4+\overline{\left(...1\right)}^{501}.23-\overline{\left(...1\right)}^{998}.19\)
\(=\overline{\left(...6\right)}.4+\overline{\left(...1\right)}.23-\overline{\left(...1\right)}.19\)
\(=\overline{\left(...4\right)}+\overline{\left(...3\right)}-\overline{\left(...9\right)}\)
\(=\overline{\left(...7\right)}-\overline{\left(...9\right)}\)
\(=\overline{...8}\)
Để tính số chữ số 0 tận cùng của một tích, chúng ta cần xem xét số lượng các thừa số 2 và 5 trong tích đó.
Một chữ số 0 tận cùng sẽ được tạo ra khi có ít nhất một cặp thừa số 2 và 5 trong tích. Vì vậy, chúng ta cần xem xét số lượng các thừa số 2 và 5 trong từng tích A, B và C.
Trong trường hợp của tích A, chúng ta có 19 thừa số chẵn từ 2 đến 18. Trong số này, có 9 thừa số chia hết cho 5 (ví dụ: 10, 15). Vì vậy, chúng ta có ít nhất 9 cặp thừa số 2 và 5 trong tích A.
Trong trường hợp của tích B, chúng ta có 49 thừa số chẵn từ 2 đến 48. Trong số này, có 9 thừa số chia hết cho 5 (ví dụ: 10, 15, 20, ..., 45). Vì vậy, chúng ta có ít nhất 9 cặp thừa số 2 và 5 trong tích B.
Trong trường hợp của tích C, chúng ta có 149 thừa số chẵn từ 2 đến 148. Trong số này, chỉ có 29 thừa số chia hết cho 5 (ví dụ: 10, 15, 20, ..., 145). Vì vậy, chúng ta có ít nhất 29 cặp thừa số 2 và 5 trong tích C.
Vì tích A, B và C đều có ít nhất số cặp thừa số 2 và 5 như vậy, nên số chữ số 0 tận cùng của từng tích sẽ bằng số lượng cặp thừa số đó, tức là:
Số chữ số 0 tận cùng của A = 9 Số chữ số 0 tận cùng của B = 9 Số chữ số 0 tận cùng của C = 29
Ta thấy:Các số có tận cùng là 0;1;5;6 khi nâng lên bất kì lũy thừa bậc nào đều có tận cùng là chính nó.
=>a)=...5
b)=...0.
c=...6
d=...1.
e)9^18=(9^2)^9=81^9=...1
1) \(S=2.2.2..2\left(2023.số.2\right)\)
\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)
2) \(S=3.13.23...2023\)
Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)
\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)
\(\Rightarrow S=\overline{.....7}\)
3) \(S=4.4.4...4\left(2023.số.4\right)\)
\(\Rightarrow S=4^{2023}=\overline{.....4}\)
4) \(S=7.17.27.....2017\)
Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)
\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)
\(\Rightarrow S=\overline{.....9}\)
Bài 1:
S = 2 x 2 x 2 x 2 x 2 x...x 2 (2023 chữ số 2)
Nhóm 4 thừa số 2 vào một nhóm thì vì:
2023 : 4 = 505 dư 3
Vậy
S = (2x2x2x2) x...x (2 x 2 x 2 x 2) x 2 x 2 x 2 có 503 nhóm (2x2x2x2)
S = \(\overline{..6}\) x ...x \(\overline{..6}\) x 8
S = \(\overline{..6}\) x 8
S = \(\overline{..8}\)
Bài 2:
S = 3 x 13 x 23 x...x 2023
Xét dãy số: 3; 13; 23;..;2023
Dãy số trên là dãy số cách đều với khoảng cách là: 13 - 3 = 10
Số số hạng của dãy số trên là: (2023 - 3):10 + 1 = 203 (số hạng)
Vậy chữ số tận cùng của S bằng chữ số tận cùng của A.
Với A = 3 x 3 x 3 x...x 3 (203 thừa số 3)
Nhóm 4 thừa số 3 thành 1 nhóm, vì 203 : 4 = 50 (dư 3)
A = (3 x 3 x 3 x 3)x...x(3x3x3x3)x3x3x3 có 50 nhóm (3x3x3x3)
A = \(\overline{..1}\) x...x \(\overline{..1}\) x 27
A = \(\overline{..7}\)