Cho tam giác đều ABC. Trên các cạnh BC, CA, AB lần lượt lấy ba điểm bất kì I, J, K sao cho K khác A, B và góc IKJ bằng 60 độ. Chứng minh: \(AJ.BI\le\dfrac{AB^2}{4}\) . Dấu "=" xảy ra khi nào?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chắc là \(AJ.BI\) chứ?
Áp dụng BĐT: \(xy\le\dfrac{1}{4}\left(x+y\right)^2\) thôi
\(BK.AK\le\dfrac{1}{4}\left(BK+AK\right)^2=\dfrac{1}{4}AB^2\)
Dấu "=" xảy ra khi K là trung điểm AB
Ta có: \(\widehat{AKJ}+\widehat{BKI}=180^o-60^o=120^o,\widehat{BKI}+\widehat{BIK}=120^o\)
=> \(\widehat{AKJ}=\widehat{BIK}\)
Mà \(\widehat{KBI}=\widehat{JAK}\left(=60^o\right)\)
=> Tam giác KAJ đồng dạng vs tam giác IBK
=> \(\frac{BI}{AK}=\frac{BK}{AJ}\Rightarrow BI.AJ=BK.AK\le\left(\frac{BK+AK}{2}\right)^2\)=\(\frac{AB^2}{4}\)
Dấu '=" xảy ra khi và chỉ khi BK=AK hay K là trung điểm AB
Câu hỏi của marivan2016 - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo nhé!
Câu hỏi của marivan2016 - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo nhé!
1) Từ \(CQ.AP=a^2\)ta được \(CQ.AP=AC^2\)hay \(\frac{CQ}{AC}=\frac{AC}{AP}\)
Xét hai tam giác ACP và CQA có \(\frac{CQ}{AC}=\frac{AC}{AP}\)và \(\widehat{PAC}=\widehat{QCA}\left(=60^0\right)\)nên \(\Delta ACP~\Delta CQA\)
Từ đó ta được \(\widehat{ACP}=\widehat{AQC}\). Mà ta có \(\widehat{ACP}=\widehat{ACB}+\widehat{BCP}=60^0+\widehat{BCP}\)
và \(\widehat{AQC}=\widehat{ABC}+\widehat{BAM}=60^0+\widehat{BAM}\)
Do đó \(\widehat{MAB}=\widehat{BCM}\), suy ra tứ giác ABMC nội tiếp
Vậy bốn điểm A, B, M, C cùng thuộc một đường tròn (đpcm)
2)
a) Do tứ giác ABMC và AIMK nội tiếp nên \(\widehat{BMC}=\widehat{IMK}=120^0\), suy ra \(\widehat{IMB}=\widehat{KMC}\)
Mà hai tứ giác BIMJ và CKJM nội tiếp nên ta lại có \(\widehat{BMI}=\widehat{BJI};\widehat{KMC}=\widehat{KJC}\)
Do đó ta được \(\widehat{BJI}=\widehat{KJC}\)nên ba điểm I, J, K thẳng hàng
Dễ thấy hai tam giác BMC và IMK đồng dạng với nhau. Do đó ta được \(\frac{IK}{BC}=\frac{MI}{MB}\)
Mà ta có \(IM\le MB\) nên ta được \(IK\le BC\) hay \(IK\le a\) , dấu bằng xảy ra khi \(MB\perp AB\) hay M nằm chính giữa cung nhỏ BC, khi đó Q là trung điểm cạnh BC.
Vậy IK lớn nhất khi Q là trung điểm của BC
b) Do tứ giác BIMJ nội tiếp nên ta có \(\widehat{IMJ}=\widehat{ABC}=60^0=\widehat{ACB}\). Lại có \(\widehat{MIJ}=\widehat{MBJ}=\widehat{MAC}\)
Do đó hai tam giác IMJ và ACQ đồng dạng, do đó ta được \(\frac{MJ}{MI}=\frac{CQ}{CA}\). Tương tự ta được \(\frac{MJ}{ MK}=\frac{BQ}{AB}\)
Từ đó suy ra \(\frac{MJ}{MI}+\frac{MJ}{MK}=\frac{CQ}{CA}+\frac{BQ}{AB}=1\Rightarrow MJ\left(MK+MI\right)=MI.MK\)
Hay \(MI.MK-MJ.MI-MJ.MK=0\)
Mặt khác ta lại có \(S_{ABM}=\frac{1}{2}AB.MI;S_{BCM}=\frac{1}{2}BC.MJ;S_{ACM}=\frac{1}{2}MK.AC\)
Mà \(S_{ABM}+S_{ACM}=S_{BCM}+S_{ABC}\)và \(S_{ABC}=\frac{a^2\sqrt{3}}{4}\). Nên ta có \(AB.MI+MK.AC=BC.MJ+\frac{a^2\sqrt{3}}{2}\)hay \(MI+MK=MJ+\frac{a\sqrt{3}}{2}\)
Do đó \(\left(MI+MK-MJ\right)^2=\frac{3a^2}{4}\)
Suy ra \(MI^2+MJ^2+MK^2+2\left(MI.MK-MI.MJ-MJ.MK\right)=\frac{3a^2}{4}\)
Mà \(MI.MK-MJ.MI-MJ.MK=0\)(cmt) nên \(MI^2+MJ^2+MK^2=\frac{3a^2}{4}\)(không đổi)
Vậy \(MI^2+MJ^2+MK^2\)không đổi khi Q thay đổi trên cạnh BC (đpcm)
a: Xét tứ giác AIMJ có
\(\widehat{AIM}=\widehat{AJM}=\widehat{JAI}=90^0\)
=>AIMJ là hình chữ nhật
b: AIMJ là hình chữ nhật
=>MI//AJ và MI=AJ
MI=AJ
MN=MI
Do đó: MN=AJ
MI//AJ
N\(\in\)MI
Do đó: MN//JA
Xét tứ giác AMNJ có
AJ//MN
AJ=MN
Do đó: AMNJ là hình bình hành
a, EH _|_ BD (GT)
CD _|_ BD (GT)
=> CD // EH (tc)
=> góc HEB = góc ACB (đồng vj)
góc ACB = góc ABC do tam giác ABC cân tại A (gt)
=> góc HEB = góc ABC
xét tam giác BFE và tam giác EHB có : BE chung
góc BFE = góc EHB = 90
=> tam giác BFE = tam giác EHB (ch-gn)
b, tam giác BFE = tam giác EHB (câu a)
=> EF = BH (đn) (1)
xét tứ giác HDGE có góc EHD = góc HDG = góc DGE = 90
=> HDGE là hình chữ nhật (dh )
=> HD = EG
BH + HD = BD và (1)
=> EF + EG = BD
c,
mạo phép sửa đề:\(\widehat{IKJ}=60^o\)
vì tam giác ABC đều nên\(\widehat{A}=\widehat{B}=\widehat{C}=60^o\)
ta có:\(\widehat{AKJ}+\widehat{IKJ}+\widehat{IKB}=180^o\)(K\(\in\)AB)
\(\Rightarrow\widehat{AKJ}+\widehat{IKB}=180^o-\widehat{IKJ}=120^o\)(1)
xét \(\Delta BIK\):\(\widehat{B}+\widehat{IKB}+\widehat{BIK}=180^o\)(tổng 3 góc trong tam giác)
mà \(\widehat{B}=60^o\Rightarrow\widehat{BIK}+\widehat{IKB}=120^o\)(2)
từ (1)và (2):\(\widehat{AKJ}=\widehat{BIK}\)
xét \(\Delta AKJ\)và\(\Delta BIK\)có:\(\widehat{A}=\widehat{B}=60^o\left(cmt\right)\)
\(\widehat{AKJ}=\widehat{BIK}\left(cmt\right)\Rightarrow\Delta AKJ\)~\(\Delta BIK\left(g.g\right)\)
\(\rightarrow\frac{AJ}{BK}=\frac{AK}{IB}\Leftrightarrow AJ.IB=BK.AK\)
áp dụng BĐT \(\left(a+b\right)^2\ge4ab\)(cách cm:chuyển vế tương đương or dùng cauchy)\(\Rightarrow ab\le\frac{\left(a+b\right)^2}{4}\)
\(BK.AK\le\frac{\left(BK+AK\right)^2}{4}\Leftrightarrow AJ.IB\le\frac{AB^2}{4}\)
dấu = xảy ra khi BK=AK hay K là trung điểm của AB