Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( 1 số phần cơ bản sẽ làm tắt nha, cái đấy bạn sẽ tự trình bày rõ nhá, nhất là chứng minh tứ giác nội tiếp sẽ rút ngắn lại )
a)\(\widehat{ABO}=\widehat{AEO}=90^0\)
\(\Rightarrow ABEO\)nội tiếp
=> A,B,E,O thuộc 1 đường tròn
b) Xét tam giác AMC và tam giác ACN có:
\(\hept{\begin{cases}\widehat{NAC}chung\\\widehat{ACM}=\widehat{ANC}\left(=\frac{1}{2}sđ\widebat{MC}\right)\end{cases}\Rightarrow\Delta AMC~\Delta ACN\left(g-g\right)}\)
\(\Rightarrow\frac{AM}{AC}=\frac{AC}{AN}\)
\(\Rightarrow AC^2=AM.AN\)
c) \(\widehat{MJC}+\widehat{MFC}=180^0\)
\(\Rightarrow MJCF\)nội tiếp
\(\Rightarrow\widehat{MFJ}=\widehat{MCJ}\)
Mà \(\widehat{MCJ}=\widehat{MBC}\left(=\frac{1}{2}sđ\widebat{MC}\right)\)
\(\Rightarrow\widehat{MFJ}=\widehat{MBC}\left(1\right)\)
CMTT \(\widehat{MFI}=\widehat{MCB}\left(2\right)\)
Xét tam giác MBC có: \(\widehat{CMB}+\widehat{MCB}+\widehat{MBC}=180^0\left(3\right)\)
Từ (1), (2) và (3) \(\Rightarrow\widehat{CMB}+\widehat{MFJ}+\widehat{MFI}=180^0\)
\(\Rightarrow\widehat{CMB}+\widehat{PFQ}=180^0\)
\(\Rightarrow MPFQ\)nội tiếp
\(\Rightarrow\widehat{MPQ}=\widehat{MFQ}\)mà \(\widehat{MFQ}=\widehat{MBC}\left(cmt\right)\)
\(\Rightarrow\widehat{MPQ}=\widehat{MBC}\)mà 2 góc này ở vị trí đồng vị
\(\Rightarrow PQ//BC\)
d) Xét tam giác MIF và tam giác MFJ có:
\(\hept{\begin{cases}\widehat{MIF}=\widehat{MFJ}\left(=\widehat{MBF}\right)\\\widehat{MJF}=\widehat{MFI}\left(=\widehat{MCF}\right)\end{cases}\Rightarrow\Delta MIF~\Delta MFJ\left(g-g\right)}\)
\(\Rightarrow\frac{MI}{MF}=\frac{MF}{MJ}\)
\(\Rightarrow MI.MJ=MF^2\)
MI.MJ lớn nhất \(\Leftrightarrow MF^2\)lớn nhất
Mà \(MF=\frac{1}{2}MN\)
\(\Rightarrow MF^2=\frac{1}{4}MN^2\)
\(\Rightarrow MF\)lớn nhất <=> MN lớn nhất \(\Leftrightarrow MN\)là đường kính (O)
\(\Leftrightarrow M\)là điểm chính giữa cung BC
Vậy MI.MJ lớn nhất <=> M là điểm chính giữa cung BC.
( KO hiểu thì hỏi mình nha )
Bạn tự vẽ hình nhá.
Vì E là trung điểm MN => OE vuông góc MN => góc OEA =90độ
Xét tứ giác: AEOC có góc AEO + góc ACO=180độ => AEOC nội tiếp => A, E, O, C cùng thuộc 1 đường tròn
Xét tứ giác: ABEO có góc ABO + góc AEO=90độ => ABEO nội tiếp => A, E, O, B cùng thuộc 1 đường tròn
=> A, B, C, O, E cùng thuộc 1 đường tròn.
b, Ta có: góc BNC= 1/2 góc BOC (góc nội tiếp bằng 1/2 góc ở tâm) => 2.góc BNC= góc BOC
MÀ góc ABOC nội tiếp (do góc ABO+ góc ACO = 180độ) => gó BAC + góc BOC=180độ
=> 2.góc BNC+ góc BAC= 180độ
c, ta có: AMN là cát tuyến, AB là tiếp tuyến của (O) => AB2=AM.AN
Lại có tg AHB đồng dạng tg ABO (g-g) => \(\frac{AH}{AB}=\frac{AB}{AO}\)=> AB2=AH.AO
=> AH.AO= AM.AN => \(\frac{AM}{AH}=\frac{AO}{AN}\)
Và góc MAH=góc OAN => tg MAH đồng dạng tg OAN (c-g-c) => góc AMH = góc AON
Mà góc AMH + góc HMN =180độ
=> góc AON + góc HMN =180độ
=> tứ giác MNOH nội tiếp
a) Dễ thấy \(\Delta HBM\) và \(\Delta KCM\) là nửa các tam giác đều
Đặt BM = x ; CM = y \(\Rightarrow x+y=a\) (không đổi)
Ta có \(MH=sinB.BM=\frac{\sqrt{3}x}{2}\) ; \(MK=sinC.CM=\frac{\sqrt{3}y}{2}\)
\(\Rightarrow MH+MK=\frac{\sqrt{3}}{2}\left(x+y\right)=\frac{\sqrt{3}a}{2}\) không đổi.
b) Vì MH + MK không đổi khi M di chuyển trên BC (câu a) nên MH.MK đạt giá trị lớn nhất \(\Leftrightarrow MH=MK\)
Theo bất đẳng thức Cosi, ta có : \(MH.MK\le\frac{\left(MH+MK\right)^2}{4}=\frac{\left(\frac{\sqrt{3}a}{2}\right)^2}{4}=\frac{3a^2}{16}\)
Vậy Max MH.MK \(=\frac{3a^2}{16}\Leftrightarrow MH=MK\Leftrightarrow MB=MC\Leftrightarrow\)M là trung điểm của BC
1) Từ \(CQ.AP=a^2\)ta được \(CQ.AP=AC^2\)hay \(\frac{CQ}{AC}=\frac{AC}{AP}\)
Xét hai tam giác ACP và CQA có \(\frac{CQ}{AC}=\frac{AC}{AP}\)và \(\widehat{PAC}=\widehat{QCA}\left(=60^0\right)\)nên \(\Delta ACP~\Delta CQA\)
Từ đó ta được \(\widehat{ACP}=\widehat{AQC}\). Mà ta có \(\widehat{ACP}=\widehat{ACB}+\widehat{BCP}=60^0+\widehat{BCP}\)
và \(\widehat{AQC}=\widehat{ABC}+\widehat{BAM}=60^0+\widehat{BAM}\)
Do đó \(\widehat{MAB}=\widehat{BCM}\), suy ra tứ giác ABMC nội tiếp
Vậy bốn điểm A, B, M, C cùng thuộc một đường tròn (đpcm)
2)
a) Do tứ giác ABMC và AIMK nội tiếp nên \(\widehat{BMC}=\widehat{IMK}=120^0\), suy ra \(\widehat{IMB}=\widehat{KMC}\)
Mà hai tứ giác BIMJ và CKJM nội tiếp nên ta lại có \(\widehat{BMI}=\widehat{BJI};\widehat{KMC}=\widehat{KJC}\)
Do đó ta được \(\widehat{BJI}=\widehat{KJC}\)nên ba điểm I, J, K thẳng hàng
Dễ thấy hai tam giác BMC và IMK đồng dạng với nhau. Do đó ta được \(\frac{IK}{BC}=\frac{MI}{MB}\)
Mà ta có \(IM\le MB\) nên ta được \(IK\le BC\) hay \(IK\le a\) , dấu bằng xảy ra khi \(MB\perp AB\) hay M nằm chính giữa cung nhỏ BC, khi đó Q là trung điểm cạnh BC.
Vậy IK lớn nhất khi Q là trung điểm của BC
b) Do tứ giác BIMJ nội tiếp nên ta có \(\widehat{IMJ}=\widehat{ABC}=60^0=\widehat{ACB}\). Lại có \(\widehat{MIJ}=\widehat{MBJ}=\widehat{MAC}\)
Do đó hai tam giác IMJ và ACQ đồng dạng, do đó ta được \(\frac{MJ}{MI}=\frac{CQ}{CA}\). Tương tự ta được \(\frac{MJ}{ MK}=\frac{BQ}{AB}\)
Từ đó suy ra \(\frac{MJ}{MI}+\frac{MJ}{MK}=\frac{CQ}{CA}+\frac{BQ}{AB}=1\Rightarrow MJ\left(MK+MI\right)=MI.MK\)
Hay \(MI.MK-MJ.MI-MJ.MK=0\)
Mặt khác ta lại có \(S_{ABM}=\frac{1}{2}AB.MI;S_{BCM}=\frac{1}{2}BC.MJ;S_{ACM}=\frac{1}{2}MK.AC\)
Mà \(S_{ABM}+S_{ACM}=S_{BCM}+S_{ABC}\)và \(S_{ABC}=\frac{a^2\sqrt{3}}{4}\). Nên ta có \(AB.MI+MK.AC=BC.MJ+\frac{a^2\sqrt{3}}{2}\)hay \(MI+MK=MJ+\frac{a\sqrt{3}}{2}\)
Do đó \(\left(MI+MK-MJ\right)^2=\frac{3a^2}{4}\)
Suy ra \(MI^2+MJ^2+MK^2+2\left(MI.MK-MI.MJ-MJ.MK\right)=\frac{3a^2}{4}\)
Mà \(MI.MK-MJ.MI-MJ.MK=0\)(cmt) nên \(MI^2+MJ^2+MK^2=\frac{3a^2}{4}\)(không đổi)
Vậy \(MI^2+MJ^2+MK^2\)không đổi khi Q thay đổi trên cạnh BC (đpcm)