K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 1 2021

Tứ giác ABMC nội tiếp \(\Rightarrow\widehat{ABM}+\widehat{ACM}=180^0\)

Mà \(\widehat{ACM}+\widehat{MCE}=180^0\Rightarrow\widehat{ABM}=\widehat{MCE}\)

D và E cùng nhìn CM dưới 1 góc vuông \(\Rightarrow CDME\) nội tiếp

\(\Rightarrow\widehat{MCE}=\widehat{MDE}\) (cùng chắn ME) \(\Rightarrow\widehat{ABM}=\widehat{MDE}\)

Mặt khác D và F cùng nhìn BM dưới 1 góc vuông \(\Rightarrow BFDM\) nội tiếp

\(\Rightarrow\widehat{ABM}+\widehat{FDM}=180^0\)

\(\Rightarrow\widehat{MDE}+\widehat{FDM}=180^0\Rightarrow\) D, E, F thẳng hàng

NV
21 tháng 1 2021

Hình vẽ:

undefined

23 tháng 5 2017

 

Vì DPN+DQN=90o+90o=180o nên DPNQ là tứ giác nội tiếp

=>QPN=QDN (hai góc nội tiếp cùng chắn cung QN) (5)

Mặt khác DENF là tứ giác nội tiếp nên QDN=FEN  (6)

Từ (5) và (6) ta có FEN=QPN (7)

Tương tự ta có: EFN=PQN  (8)

Từ (7) và (8) suy ra  Δ N P Q ~ Δ N E F ( g . g ) = > P Q E F = N Q N F

Theo quan hệ đường vuông góc – đường xiên, ta có

N Q ≤ N F = > P Q E F = N Q N F ≤ 1 = > P Q ≤ E F

Dấu bằng xảy ra khi Q ≡ F NF DF D, O, N thẳng hàng.

Do đó PQ max khi M là giao điểm của AC và BN, với N là điểm đối xứng với D qua O.

1 tháng 2 2019

a/ Gọi \(F\in BC/A\widehat{D}B=F\widehat{D}C\)

Xét \(\Delta ADB\)\(\Delta FDC\)ta có

\(\hept{\begin{cases}A\widehat{D}B=F\widehat{D}C\\B\widehat{A}D=F\widehat{C}D\end{cases}}\)(2 góc n.t chắn cung BD)

\(=>\Delta ADB\)đồng dạng \(\Delta CDF\)

=>\(\frac{AB}{CF}=\frac{DA}{DC}\left(1\right)\)

Xét \(\Delta DAK\)và \(\Delta DCH\)ta có

\(K\widehat{A}D=H\widehat{C}D\)(2 góc n.t chắn cung BD)

\(A\widehat{K}D=C\widehat{H}D\left(=90^0\right)\)

=>\(\Delta DAK\)đồng dạng \(\Delta DCH\)(g-g)

=>\(\frac{DA}{DC}=\frac{DK}{DH}\left(2\right)\)

(1) và (2) =>  \(\frac{AB}{CF}=\frac{DK}{DH}\)=>\(\frac{AB}{DK}=\frac{CF}{DH}\left(3\right)\)

C/m tương tự => \(\frac{AC}{DI}=\frac{BF}{DH}\left(4\right)\)

(3),(4) => \(\frac{AC}{DI}+\frac{AB}{DK}=\frac{CF}{DH}+\frac{BF}{DH}=\frac{BC}{DH}\left(đpcm\right)\)

b/ Xét tứ giác BKDH ta có : \(B\widehat{K}D+B\widehat{H}D=180^0\)

=> Tứ giác BKDH n.t => \(K\widehat{B}D=K\widehat{H}D\)

                                Mà   \(K\widehat{B}D=I\widehat{C}D\)( tứ giác ABDC n.t (O))

                                Nên \(K\widehat{H}D=I\widehat{C}D\left(5\right)\)

Xét tứ giác IHDC ta có : \(D\widehat{H}C=D\widehat{IC}\left(=90^0\right)\)

=> Tứ giác IHDC n.t => \(I\widehat{C}D+I\widehat{H}D=180^0\left(6\right)\)

(5),(6) => \(K\widehat{H}D+I\widehat{H}D=180^0\)=> H,I,K thẳng hàng

Đường thẳng simson thôi

1 tháng 2 2019

Mơn bạn nhìu

18 tháng 5 2021
Bài này sử dụng tứ giác nội tiếp và sử dụng góc bẹt

Bài tập Tất cả

Bài tập Tất cả

Bài tập Tất cả

Bài tập Tất cả

mik ko bt lm bài này bn à . mik thông minh lắm mấy bn mới ngu ấy

3 tháng 2 2019

A B C D M N O I K P Q H S R L T E G

1) Do DN // AB nên ^DNC = ^BAC (Đồng vị). Mà ^BAC = ^DBC nên ^DNC = ^DBC => Tứ giác BNCD nội tiếp

Suy ra 5 điểm B,O,N,C,D cùng thuộc 1 đường tròn  => ^BND = ^BOD = ^COD = ^CND

Ta có: DN // AB => ^BND = ^ABN. ^CND = ^NAB => ^NBA = ^NAB => \(\Delta\)ANB cân tại N (đpcm).

2) Ta có: ^DCM = ^DNB = ^DNC => \(\Delta\)DMC ~ \(\Delta\)DCN => DC2 = DM.DN. Dễ thấy: DC2 = DI.DA

Suy ra: DM.DN = DI.DA => Tứ giác AIMN nội tiếp => ^IMK = ^IAN = ^IBC => \(\Delta\)MIK ~ \(\Delta\)MKB (g.g)

=> KM2 = KI.KB. Ta lại có: ^KDI = ^IAB = ^KBD => \(\Delta\)IKD ~ \(\Delta\)DKB (g.g) => KD2 = KI.KB

Từ đó: KM2 = KD2 => KM = KD = DM/2. Do G là trung điểm KD nên \(\frac{GM}{GK}=3\) (1)

Gọi giao điểm của tia AD và tia ND là R. Theo hệ quả ĐL Thales: \(\frac{QB}{QM}=\frac{AB}{MR}\) (2)

Nếu ta gọi giao của PI với BC là V, theo phép vị tự thì I là trung điểm của PV. Từ đó suy ra: GM=GR

Mà GD = GK = GM/3 nên DK = MR/3. Lại áp dụng hệ quả ĐL Thales:  \(\frac{IK}{IB}=\frac{DK}{AB}=\frac{MR}{3AB}\) (3)

Từ (1),(2),(3) suy ra: \(\frac{GM}{GK}.\frac{QB}{QM}.\frac{IK}{IB}=3.\frac{AB}{MR}.\frac{MR}{3AB}=1\). Theo đk đủ của ĐL Mélelaus thì 3 điểm Q,I,G tương ứng nằm trên các cạnh BM,BK,KM của \(\Delta\)BKM thẳng hàng (đpcm).

3) Gọi (HCS) cắt (O) tại điểm thứ hai là T. E là giao điểm của OD và BC.

Ta thấy: ^TBD = ^TCB = ^THS = ^THD (Góc tạo bởi tiếp tuyến và dây + Góc nội tiếp) => Tứ giác BHTD nội tiếp

Từ đó: 5 điểm B,H,E,T,D cùng thuộc 1 đường tròn => ^BTD = ^BED = 900 

Mặt khác: ^DTE = 180- ^DBE = 1800 - ^BAC = ^BTC => ^DTE = ^BTC => ^BTD = ^CTE

Suy ra: ^CTE = 900 => T nằm trên đường tròn (CE) cố định. Mà T cũng thuộc (O) cố định.

Nên T là điểm cố định. Do đó: Dây CT của đường tròn (HCS) cố định

=> Tâm L của (HCS) luôn nằm trên đường trung trực của đoạn CT cố định (đpcm).

góc MKC=góc MIC=90 độ

=>MCKI nội tiếp

=>góc MIK+góc MCK=180 độ

góc MIB+góc MHB=180 độ

=>MIBH nội tiếp

=>góc MIH=góc MBH

góc MIH+góc MIK

=180 độ-góc MCK+góc MBH

=180 độ

=>H,I,K thẳng hàng