K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2019

A B C 60 60 I K J 60 60

Ta có: \(\widehat{AKJ}+\widehat{BKI}=180^o-60^o=120^o,\widehat{BKI}+\widehat{BIK}=120^o\)

=> \(\widehat{AKJ}=\widehat{BIK}\)

Mà \(\widehat{KBI}=\widehat{JAK}\left(=60^o\right)\)

=> Tam giác KAJ đồng dạng vs tam giác IBK

=> \(\frac{BI}{AK}=\frac{BK}{AJ}\Rightarrow BI.AJ=BK.AK\le\left(\frac{BK+AK}{2}\right)^2\)=\(\frac{AB^2}{4}\)

Dấu '=" xảy ra khi và chỉ khi BK=AK hay K là trung điểm AB

4 tháng 10 2019

CẢM ƠN CÔ ĐÃ GIẢI BÀI

13 tháng 2 2017

mạo phép sửa đề:\(\widehat{IKJ}=60^o\)

A B C I J K

vì tam giác ABC đều nên\(\widehat{A}=\widehat{B}=\widehat{C}=60^o\)

ta có:\(\widehat{AKJ}+\widehat{IKJ}+\widehat{IKB}=180^o\)(K\(\in\)AB)

\(\Rightarrow\widehat{AKJ}+\widehat{IKB}=180^o-\widehat{IKJ}=120^o\)(1)

xét \(\Delta BIK\):\(\widehat{B}+\widehat{IKB}+\widehat{BIK}=180^o\)(tổng 3 góc trong tam giác)

\(\widehat{B}=60^o\Rightarrow\widehat{BIK}+\widehat{IKB}=120^o\)(2)

từ (1)và (2):\(\widehat{AKJ}=\widehat{BIK}\)

xét \(\Delta AKJ\)\(\Delta BIK\)có:\(\widehat{A}=\widehat{B}=60^o\left(cmt\right)\)

\(\widehat{AKJ}=\widehat{BIK}\left(cmt\right)\Rightarrow\Delta AKJ\)~\(\Delta BIK\left(g.g\right)\)

\(\rightarrow\frac{AJ}{BK}=\frac{AK}{IB}\Leftrightarrow AJ.IB=BK.AK\)

áp dụng BĐT \(\left(a+b\right)^2\ge4ab\)(cách cm:chuyển vế tương đương or dùng cauchy)\(\Rightarrow ab\le\frac{\left(a+b\right)^2}{4}\)

\(BK.AK\le\frac{\left(BK+AK\right)^2}{4}\Leftrightarrow AJ.IB\le\frac{AB^2}{4}\)

dấu = xảy ra khi BK=AK hay K là trung điểm của AB

12 tháng 3 2019

Câu hỏi của marivan2016 - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo nhé!

12 tháng 3 2019

Câu hỏi của marivan2016 - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo nhé !

25 tháng 6 2021

A B' C B C' K y x b c D H N A/2

- Dựng phân giác AD của góc A . Sau đó dựng BB' và CC' vuông góc với AD 

- Đặt BB' = x , CC' = y . Ta có :

+) \(\Delta ABB'\)cân tại A \(sin\frac{A}{2}=\frac{x}{2c}\)

+) \(\Delta ACC'\)cân tại A \(sin\frac{A}{2}=\frac{y}{2b}\)

\(\Rightarrow sin^2\frac{A}{2}=\frac{xy}{4bc}\)

Để cm(1) , ta cần cm : \(xy\le a^2\)

+) Trong tam giác BHD vuông tại H ta có : \(BH\le CD\)hay \(\frac{x}{2}\le BD\)

+) Trong tam giác CKD vuông tại K ta có : \(CK\le CH\)hay \(\frac{y}{2}\le CD\)

\(\Rightarrow a=BD+CD\ge\frac{x+y}{2}\ge\sqrt{xy}\)

\(\Rightarrow a^2\ge xy\left(đpcm\right)\)

25 tháng 6 2021

A B C D E F

Kẻ phân giác AD của tam giác ABC (D nằm trên đoạn BC)

Từ B,C kẻ các đường vuông góc với đường thẳng AD tại E,F

Khi đó ta có: \(\sin\widehat{BAE}=\frac{BE}{AB}=\frac{BE}{c}\) ; \(\sin\widehat{FAC}=\frac{CF}{AC}=\frac{CF}{b}\)

Mà \(\sin\frac{\widehat{A}}{2}=\sin\widehat{BAE}=\sin\widehat{FAC}=\frac{BE}{c}=\frac{CF}{b}=\frac{BE+CF}{b+c}\)

Ta thấy \(\hept{\begin{cases}BE\le BD\\CF\le CD\end{cases}}\Rightarrow BE+CF\le BD+CD=BC\)

Lại có theo bất đẳng thức Cauchy: \(b+c\ge2\sqrt{bc}\)

\(\Rightarrow\sin\frac{\widehat{A}}{2}=\frac{BE+CF}{b+c}\le\frac{BC}{2\sqrt{bc}}=\frac{a}{2\sqrt{bc}}\)

Dấu "=" xảy ra khi tam giác ABC cân tại A

15 tháng 7 2017

\(\frac{2\left(Σab\right)}{Σa^2}\le\frac{2\left(Σa^2\right)}{a^2}=2\)

tuc la can cm \(Σ\frac{a}{b+c}\le\frac{7}{2}-2=\frac{3}{2}\)

Nguoc dau voi BDT Nesbitt

vay BDT sai ko xay ra dau = maybe :3

15 tháng 7 2017

Bất đẳng thức này mà ko loạn dấu thì tự làm đc r. Nhưng vế trước>=3/2, vế sau<=2 quá loạn dấu