Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mạo phép sửa đề:\(\widehat{IKJ}=60^o\)
vì tam giác ABC đều nên\(\widehat{A}=\widehat{B}=\widehat{C}=60^o\)
ta có:\(\widehat{AKJ}+\widehat{IKJ}+\widehat{IKB}=180^o\)(K\(\in\)AB)
\(\Rightarrow\widehat{AKJ}+\widehat{IKB}=180^o-\widehat{IKJ}=120^o\)(1)
xét \(\Delta BIK\):\(\widehat{B}+\widehat{IKB}+\widehat{BIK}=180^o\)(tổng 3 góc trong tam giác)
mà \(\widehat{B}=60^o\Rightarrow\widehat{BIK}+\widehat{IKB}=120^o\)(2)
từ (1)và (2):\(\widehat{AKJ}=\widehat{BIK}\)
xét \(\Delta AKJ\)và\(\Delta BIK\)có:\(\widehat{A}=\widehat{B}=60^o\left(cmt\right)\)
\(\widehat{AKJ}=\widehat{BIK}\left(cmt\right)\Rightarrow\Delta AKJ\)~\(\Delta BIK\left(g.g\right)\)
\(\rightarrow\frac{AJ}{BK}=\frac{AK}{IB}\Leftrightarrow AJ.IB=BK.AK\)
áp dụng BĐT \(\left(a+b\right)^2\ge4ab\)(cách cm:chuyển vế tương đương or dùng cauchy)\(\Rightarrow ab\le\frac{\left(a+b\right)^2}{4}\)
\(BK.AK\le\frac{\left(BK+AK\right)^2}{4}\Leftrightarrow AJ.IB\le\frac{AB^2}{4}\)
dấu = xảy ra khi BK=AK hay K là trung điểm của AB
Câu hỏi của marivan2016 - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo nhé!
- Dựng phân giác AD của góc A . Sau đó dựng BB' và CC' vuông góc với AD
- Đặt BB' = x , CC' = y . Ta có :
+) \(\Delta ABB'\)cân tại A \(sin\frac{A}{2}=\frac{x}{2c}\)
+) \(\Delta ACC'\)cân tại A \(sin\frac{A}{2}=\frac{y}{2b}\)
\(\Rightarrow sin^2\frac{A}{2}=\frac{xy}{4bc}\)
Để cm(1) , ta cần cm : \(xy\le a^2\)
+) Trong tam giác BHD vuông tại H ta có : \(BH\le CD\)hay \(\frac{x}{2}\le BD\)
+) Trong tam giác CKD vuông tại K ta có : \(CK\le CH\)hay \(\frac{y}{2}\le CD\)
\(\Rightarrow a=BD+CD\ge\frac{x+y}{2}\ge\sqrt{xy}\)
\(\Rightarrow a^2\ge xy\left(đpcm\right)\)
Kẻ phân giác AD của tam giác ABC (D nằm trên đoạn BC)
Từ B,C kẻ các đường vuông góc với đường thẳng AD tại E,F
Khi đó ta có: \(\sin\widehat{BAE}=\frac{BE}{AB}=\frac{BE}{c}\) ; \(\sin\widehat{FAC}=\frac{CF}{AC}=\frac{CF}{b}\)
Mà \(\sin\frac{\widehat{A}}{2}=\sin\widehat{BAE}=\sin\widehat{FAC}=\frac{BE}{c}=\frac{CF}{b}=\frac{BE+CF}{b+c}\)
Ta thấy \(\hept{\begin{cases}BE\le BD\\CF\le CD\end{cases}}\Rightarrow BE+CF\le BD+CD=BC\)
Lại có theo bất đẳng thức Cauchy: \(b+c\ge2\sqrt{bc}\)
\(\Rightarrow\sin\frac{\widehat{A}}{2}=\frac{BE+CF}{b+c}\le\frac{BC}{2\sqrt{bc}}=\frac{a}{2\sqrt{bc}}\)
Dấu "=" xảy ra khi tam giác ABC cân tại A
\(\frac{2\left(Σab\right)}{Σa^2}\le\frac{2\left(Σa^2\right)}{a^2}=2\)
tuc la can cm \(Σ\frac{a}{b+c}\le\frac{7}{2}-2=\frac{3}{2}\)
Nguoc dau voi BDT Nesbitt
vay BDT sai ko xay ra dau = maybe :3
Bất đẳng thức này mà ko loạn dấu thì tự làm đc r. Nhưng vế trước>=3/2, vế sau<=2 quá loạn dấu
Ta có: \(\widehat{AKJ}+\widehat{BKI}=180^o-60^o=120^o,\widehat{BKI}+\widehat{BIK}=120^o\)
=> \(\widehat{AKJ}=\widehat{BIK}\)
Mà \(\widehat{KBI}=\widehat{JAK}\left(=60^o\right)\)
=> Tam giác KAJ đồng dạng vs tam giác IBK
=> \(\frac{BI}{AK}=\frac{BK}{AJ}\Rightarrow BI.AJ=BK.AK\le\left(\frac{BK+AK}{2}\right)^2\)=\(\frac{AB^2}{4}\)
Dấu '=" xảy ra khi và chỉ khi BK=AK hay K là trung điểm AB
CẢM ƠN CÔ ĐÃ GIẢI BÀI