Chứng tỏ : \(\dfrac{3^{2016}+6^{2016}}{7^{2016}+14^{2016}}\)=\(\dfrac{9^{2016}}{21^{2016}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{3^{2016}-6^{2016}+9^{2016}-12^{2016}+15^{2016}-18^{2016}}{-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}}\)
\(=\dfrac{\left(3^{2016}-6^{2016}\right)+\left(9^{2016}-12^{2016}\right)+\left(15^{2016}-18^{2016}\right)}{-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}}\)
\(=\dfrac{3^{2016}\left(1-2^{2016}\right)+3^{2016}\left(3^{2016}-4^{2016}\right)+3^{2016}\left(5^{2016}-6^{2016}\right)}{-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}}\)
\(=\dfrac{3^{2016}\left(1-2^{2016}+3^{2016}-4^{2016}+5^{2016}-6^{2016}\right)}{-\left(1^{2016}-2^{2016}+3^{2016}-4^{2016}+5^{2016}-6^{2016}\right)}\)
\(=-3^{2016}\).
Vậy \(P=-3^{2016}\)
\(P=\frac{3^{2016}-6^{2016}+9^{2016}-12^{2016}+15^{2016}-18^{2016}}{-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}}\)
\(=\frac{\left(1.3\right)^{2016}-\left(2.3\right)^{2016}+\left(3.3\right)^{2016}-\left(4.3\right)^{2016}+\left(5.3\right)^{2016}-\left(6.3\right)^{2016}}{-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}}\)
\(=\frac{1^{2016}.3^{2016}-2^{2016}.3^{2016}+3^{2016}.3^{2016}-4^{2016}.3^{2016}+5^{2016}.3^{2016}-6^{2016}.3^{2016}}{-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}}\)
\(=\frac{-3^{2016}\left(-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}\right)}{-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}}\)
\(=-3^{2016}\)
Ta có :
\(A=\dfrac{2016^9+3}{2016^9-1}=\dfrac{2016^9-1+4}{2016^9-1}=\dfrac{2016^9-1}{2016^9-1}+\dfrac{4}{2016^9-1}=1+\dfrac{4}{2016^9-1}\)
\(B=\dfrac{2016^9}{2016^9-4}=\dfrac{2016^9-4+4}{2016^9-4}=\dfrac{2016^9-4}{2016^9-4}+\dfrac{4}{2016^9-4}=1+\dfrac{4}{2016^9-4}\)
Vì \(1+\dfrac{4}{2016^9-1}< 1+\dfrac{4}{2016^9-4}\Rightarrow A< B\)
Giải:
a)Ta có:
C=1957/2007=1957+50-50/2007
=2007-50/2007
=2007/2007-50/2007
=1-50/2007
D=1935/1985=1935+50-50/1985
=1985-50/1985
=1985/1985-50/1985
=1-50/1985
Vì 50/2007<50/1985 nên -50/2007>-50/1985
⇒C>D
b)Ta có:
A=20162016+2/20162016-1
A=20162016-1+3/20162016-1
A=20162016-1/20162016-1+3/20162016-1
A=1+3/20162016-1
Tương tự: B=20162016/20162016-3
B=1+3/20162016-3
Vì 20162016-1>20162016-3 nên 3/20162016-1<3/20162016-3
⇒A<B
Chúc bạn học tốt!
Làm tiếp:
c)Ta có:
M=102018+1/102019+1
10M=10.(102018+1)/202019+1
10M=102019+10/102019+1
10M=102019+1+9/102019+1
10M=102019+1/102019+1 + 9/102019+1
10M=1+9/102019+1
Tương tự:
N=102019+1/102020+1
10N=1+9/102020+1
Vì 9/102019+1>9/102020+1 nên 10M>10N
⇒M>N
Chúc bạn học tốt!
Lời giải:
Ta thấy:
\(\frac{1}{2016^x+1}+\frac{1}{2016^{-x}+1}=\frac{1}{2016^x+1}+\frac{1}{\frac{1}{2016^x}+1}=\frac{1}{2016^x+1}+\frac{2016^x}{1+2016^x}=\frac{2016^x+1}{2016^x+1}=1\)
Do đó:
\(A=\frac{1}{2016^{-2016}+1}+\frac{1}{2016^{-2015}+1}+...+\frac{1}{2016^{-1}+1}+\frac{1}{2016^0+1}+\frac{1}{2016^1+1}+...+\frac{1}{2016^{2016}+1}\)
\(=\underbrace{\left(\frac{1}{2016^{-2016}+1}+\frac{1}{2016^{2016}+1}\right)+\left(\frac{1}{2016^{-2015}+1}+\frac{1}{2016^{2015}+1}\right)+....+\left(\frac{1}{2016^{-1}+1}+\frac{1}{2016^{1}+1}\right)}_{ \text{2016 cặp}}+\frac{1}{2016^0+1}\)
\(=1.2016+\frac{1}{1+1}=2016+\frac{1}{2}=\frac{4033}{2}\)
TK: Câu hỏi của Lãnh Hạ Thiên Băng - Toán lớp 6 - Học trực tuyến OLM
Giả sử \(\dfrac{3^{2016}+6^{2016}}{7^{2016}+14^{2016}}=\dfrac{9^{2016}}{21^{2016}}\)
=> \(3^{2016}\cdot21^{2016}+6^{2016}\cdot21^{2016}=7^{2016}\cdot9^{2016}+14^{2016}\cdot9^{2016}\)
=\(63^{2016}+126^{2016}=63^{2016}+126^{2016}\) (giả sử đúng)
Vậy \(\dfrac{3^{2016}+6^{2016}}{7^{2016}+14^{2016}}=\dfrac{9^{2016}}{21^{2016}}\)