\(\dfrac{1}{10}\)+ \(\dfrac{1}{15}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bài hay đấy để mk thử giải

à bạn xem lại câu a hộ mk với

2 tháng 4 2017

1. Tìm \(x\):

a) \(\dfrac{x}{5}=\dfrac{5}{6}+\dfrac{-19}{30}\)

\(\dfrac{x}{5}=\dfrac{1}{5}\)

\(\Rightarrow x=1\)

b) \(\dfrac{-5}{6}-x=\dfrac{7}{12}-\dfrac{1}{3}.x\)

\(\dfrac{-5}{6}-\dfrac{7}{12}=x-\dfrac{1}{3}.x\)

\(x-\dfrac{1}{3}.x=\dfrac{-17}{12}\)

\(\dfrac{2}{3}.x=\dfrac{-17}{12}\)

\(x=\dfrac{-17}{12}:\dfrac{2}{3}\)

\(x=\dfrac{-17}{8}\)

c) \(2016^3.2016^x=2016^8\)

\(2016^x=2016^8:2016^3\)

\(2016^x=2016^{8-3}\)

\(2016^x=2016^5\)

\(\Rightarrow x=5\)

d) \(\left(x+\dfrac{3}{4}\right):\dfrac{5}{2}=3\dfrac{1}{2}\)

\(\left(x+\dfrac{3}{4}\right):\dfrac{5}{2}=\dfrac{7}{2}\)

\(\left(x+\dfrac{3}{4}\right)=\dfrac{7}{2}.\dfrac{5}{2}\)

\(x+\dfrac{3}{4}=\dfrac{35}{4}\)

\(x=\dfrac{35}{4}-\dfrac{3}{4}\)

\(x=\dfrac{32}{4}=8\)

e) \(\left(2,8.x-2^5\right):\dfrac{2}{3}=3^2\)

\(\left(2,8.x-2^5\right)=9.\dfrac{2}{3}\)

\(2,8.x-2^5=6\)

\(2,8.x=6+32\)

\(2,8.x=38\)

\(x=38:2,8\)

\(x=\dfrac{95}{7}\)

f) \(\dfrac{4}{7}.x-\dfrac{2}{3}=\dfrac{2}{5}\)

\(\dfrac{4}{7}.x=\dfrac{2}{5}+\dfrac{2}{3}\)

\(\dfrac{4}{7}.x=\dfrac{16}{15}\)

\(x=\dfrac{16}{15}:\dfrac{4}{7}\)

\(x=\dfrac{28}{15}\)

g) \(\left(\dfrac{3x}{7}+1\right):\left(-4\right)=\dfrac{-1}{28}\)

\(\left(\dfrac{3x}{7}+1\right)=\dfrac{-1}{28}.\left(-4\right)\)

\(\dfrac{3x}{7}+1=\dfrac{1}{7}\)

\(\dfrac{3x}{7}=\dfrac{1}{7}-1\)

\(\dfrac{3x}{7}=\dfrac{-6}{7}\)

\(\Rightarrow3x=-6\)

\(x=\left(-6\right):3\)

\(x=-2\)

2 tháng 4 2017

2. Thực hiện phép tính:

a) \(\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{2}{3}-\dfrac{1}{3}:\dfrac{3}{4}+1\dfrac{4}{5}\)

\(=\dfrac{1}{2}.\left(\dfrac{2}{3}+1\right)-\dfrac{1}{3}:\dfrac{3}{4}+\dfrac{9}{5}\)

\(=\dfrac{1}{2}.\dfrac{5}{3}-\dfrac{1}{3}:\dfrac{3}{4}+\dfrac{9}{5}\)

\(=\dfrac{5}{6}-\dfrac{4}{9}+\dfrac{9}{5}\)

\(=\dfrac{7}{18}+\dfrac{9}{5}\)

\(=\dfrac{197}{90}\)

b) \(\dfrac{7.5^2-7^2}{7.24+21}\)

\(=\dfrac{7.25-7.7}{7.24+7.3}\)

\(=\dfrac{7.\left(25-7\right)}{7.\left(24+3\right)}\)

\(=\dfrac{7.18}{7.27}\)

\(=\dfrac{2}{3}\)

c) \(\dfrac{2}{3}+\dfrac{1}{3}.\left(\dfrac{-4}{9}+\dfrac{5}{6}\right):\dfrac{7}{12}\)

\(=\dfrac{2}{3}+\dfrac{1}{3}.\dfrac{7}{18}:\dfrac{7}{12}\)

\(=\dfrac{2}{3}+\dfrac{7}{54}:\dfrac{7}{12}\)

\(=\dfrac{2}{3}+\dfrac{2}{9}\)

\(=\dfrac{8}{9}\)

15 tháng 3 2017

1a.Vì \(\left|x\right|\) là 1 số tự nhiên nên \(\left|x\right|+2017\ge2017\)(1)

Mà ta đã biết:\(\dfrac{a}{b}\ge\dfrac{a}{b+n}\)với n là một số tự nhiên.

Nên từ (1)suy ra\(\dfrac{2016}{\left|x\right|+2017}\le\dfrac{2016}{2017}\)

Vậy để \(\dfrac{2016}{\left|x\right|+2017}\)lớn nhất thì \(\dfrac{2016}{\left|x\right|+2017}=\dfrac{2016}{2017}\)

1b.Ta thấy:

\(\dfrac{\left|x\right|+2016}{-2017}=\dfrac{-\left(\left|x\right|+2016\right)}{2017}\)

Để \(\dfrac{-\left(\left|x\right|+2016\right)}{2017}\)lớn nhất thì \(-\left(\left|x\right|+2016\right)\)lớn nhất

Mà theo câu a,ta có:\(\left|x\right|\)+2016 là một số tự nhiên nên \(-\left(\left|x\right|+2016\right)\)mang dấu âm hay \(-\left(\left|x\right|+2016\right)\le0\)( chú ý \(-0=0\))

Vậy để \(-\left(\left|x\right|+2016\right)\)lớn nhất hay \(\dfrac{\left|x\right|+2016}{-2017}\)lớn nhất thì \(\left|x\right|+2016=0\)

\(\Rightarrow\)Để \(\dfrac{\left|x\right|+2016}{-2017}\)lớn nhất thì nó bằng \(\dfrac{0}{-2017}\)hay nó bằng 0

15 tháng 3 2017

2)

a)Để \(\dfrac{\left|x\right|+1945}{1975}\)nhỏ nhất thì \(\left|x\right|+1945\) nhỏ nhất

\(\left|x\right|\ge0\) nên \(\left|x\right|+1945\ge1945\)

\(\Rightarrow\)Để \(\left|x\right|+1945\) nhỏ nhất thì \(\left|x\right|+1945\) = 1945

\(\Rightarrow\)Để \(\dfrac{\left|x\right|+1945}{1975}\)bé nhất thì nó phải bằng \(\dfrac{1945}{1975}\)hay\(\dfrac{389}{395}\)

b)Để \(\dfrac{-1}{\left|x\right|+1}\)thì \(\left|x\right|+1\)bé nhất

\(\left|x\right|\ge0\) nên \(\left|x\right|+1\ge1\)

\(\Rightarrow\)Để \(\left|x\right|+1\)bé nhất thì \(\left|x\right|+1\)\(=1\)

\(\Rightarrow\)GTNN của \(\dfrac{-1}{\left|x\right|+1}\)\(\dfrac{-1}{1}\) hay -1

9 tháng 7 2017

Đặt \(S=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2016}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1008}\right)\)

\(=\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\)

Nên:

\(A=\left(\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right):\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\right)\)\(=\left(\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right):\left(\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)\)\(\Rightarrow A=1\)

Vậy A = 1

Chúc bạn học tốt!!

10 tháng 7 2017

siêu ghê :))

14 tháng 7 2017

Các câu dễ tự làm :v

\(\dfrac{45-x}{1968}+\dfrac{40-x}{1973}+\dfrac{35-x}{1978}+\dfrac{30-x}{1981}=-4\) (sau khi đã sửa đề)

\(\Rightarrow\left(\dfrac{45-x}{1968}+1\right)+\left(\dfrac{40-x}{1973}+1\right)+\left(\dfrac{35-x}{1978}+1\right)+\left(\dfrac{30-x}{1981}+1\right)=0\)\(\Rightarrow\dfrac{2013-x}{1968}+\dfrac{2013-x}{1973}+\dfrac{2013-x}{1978}+\dfrac{2013-x}{1981}=0\)

\(\Rightarrow\left(2013-x\right)\left(\dfrac{1}{1968}+\dfrac{1}{1973}+\dfrac{1}{1978}+\dfrac{1}{1981}\right)=0\)

\(\Rightarrow2013-x=0\Rightarrow x=2013\)

\(1+5+9+13+17+.....+x=5050\)

Số các số hạng là:

\(\dfrac{x-1}{4}+1=\dfrac{1}{4}x+\dfrac{3}{4}\)

Như vậy có :

\(\left(\dfrac{1}{4}x+\dfrac{3}{4}\right):2\) số hạng

Theo đề bài ta có:

\(\left(\dfrac{1}{4}x+\dfrac{3}{4}\right):2\left(x+1\right)=5050\)

\(\Rightarrow\left(\dfrac{1}{4}x+\dfrac{3}{4}\right)\left(x+1\right)=10100\)

\(\Rightarrow\dfrac{1}{4}x^2+\dfrac{1}{4}x+\dfrac{3}{4}x+\dfrac{3}{4}=10100\)

\(\Rightarrow\dfrac{1}{4}x^2+x+\dfrac{3}{4}=10100\)

Kiệt sức.đến đây ko nghĩ nổi nx

14 tháng 7 2017

a,

\(5^x+5^{x+2}=650\\ 5^x\left(1+5^2\right)=650\\ 5^x\cdot26=650\\ 5^x=25\\ 5^x=5^2\\ \Rightarrow x=2\)

Vậy \(x=2\)

b,

\(\left(x+2\right)^2=81\\ \Rightarrow\left[{}\begin{matrix}x+2=9\\x+2=-9\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=7\\x=-11\end{matrix}\right.\)

Vậy \(x=7\) hoặc \(x=-11\)

d,

\(\dfrac{45-x}{1968}+\dfrac{40-x}{1973}+\dfrac{35-x}{1978}+\dfrac{30-x}{1983}=-4\\ \dfrac{45-x}{1968}+\dfrac{40-x}{1973}+\dfrac{35-x}{1978}+\dfrac{30-x}{1983}+4=0\\ \dfrac{45-x}{1968}+1+\dfrac{40-x}{1973}+1+\dfrac{35-x}{1978}+1+\dfrac{30-x}{1983}+1=0\\ \dfrac{2013-x}{1968}+\dfrac{2013-x}{1973}+\dfrac{2013-x}{1978}+\dfrac{2013-x}{1983}=0\\ \left(2013-x\right)\left(\dfrac{1}{1968}+\dfrac{1}{1973}+\dfrac{1}{1978}+\dfrac{1}{1983}\right)=0\)

\(\dfrac{1}{1968}+\dfrac{1}{1973}+\dfrac{1}{1978}+\dfrac{1}{1983}\ne0\) nên

\(2013-x=0\\ x=2013\)

Vậy \(x=2013\)

e,

\(\dfrac{1}{2016}:2015x=\dfrac{-1}{2015}\\ 2015x=\dfrac{-2015}{2016}\\ x=\dfrac{-1}{2016}\)

Vậy \(x=\dfrac{-1}{2016}\)

Bài 1 : Thực hiện phép tính ( Tính nhanh nếu có thể ) a/ [ - 2008.57 + 1004.(-86) ] : [ 32.74 + 16.(-48) ] b/ A = \(\dfrac{-1}{20}+\dfrac{-1}{30}+\dfrac{-1}{42}+\dfrac{-1}{56}+\dfrac{-1}{72}+\dfrac{-1}{90}\) c/ Cho A = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+......+\dfrac{1}{308}+\dfrac{1}{309}\) B = \(\dfrac{308}{1}+\dfrac{307}{2}+\dfrac{306}{3}+......+\dfrac{3}{306}+\dfrac{2}{307}+\dfrac{1}{308}\) Tính \(\dfrac{A}{B}?\) Bài 2. Tìm x,y...
Đọc tiếp

Bài 1 : Thực hiện phép tính ( Tính nhanh nếu có thể )

a/ [ - 2008.57 + 1004.(-86) ] : [ 32.74 + 16.(-48) ]

b/ A = \(\dfrac{-1}{20}+\dfrac{-1}{30}+\dfrac{-1}{42}+\dfrac{-1}{56}+\dfrac{-1}{72}+\dfrac{-1}{90}\)

c/ Cho A = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+......+\dfrac{1}{308}+\dfrac{1}{309}\)

B = \(\dfrac{308}{1}+\dfrac{307}{2}+\dfrac{306}{3}+......+\dfrac{3}{306}+\dfrac{2}{307}+\dfrac{1}{308}\)

Tính \(\dfrac{A}{B}?\)

Bài 2. Tìm x,y \(\in\) N biết :

a/ \(2^x+624=5^y\)

b/ \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)

Bài 3. So sánh

a/ \(17^{20}\)\(31^{15}\)

b, A = \(\dfrac{-2016}{10^{2016}}+\dfrac{-2017}{10^{2017}}\) và B = \(\dfrac{-2017}{10^{2016}}+\dfrac{-2016}{10^{2017}}\)

Bài 4. Cho góc xOy và góc yOz là 2 góc kề bù. Góc yOz = 50\(^o\)

a/ Tính góc xOy

b/ Vẽ Om là tia phân giác của góc yOz. Tính số đo góc xOm.

c/ Trên cùng một nửa mặt phẳng bờ là đường thẳng xz chứa tia Oy, Om, vẽ thêm 2017 tia phân biệt ( ko trùng với các tia Ox;Oy;Oz;Om đã cho ) thì có tất cả bao nhiêu góc?

1
9 tháng 4 2017

Đây là đề chọn HSG trường toán 6 mà mk vừa thi. Help me to get results.

9 tháng 4 2017

bạn cần hỏi bài nào

12 tháng 5 2017

\(P=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{2016}\left(1+2+...+2016\right)\)\(=1+\dfrac{2.3}{2.2}+\dfrac{3.4}{3.2}+...+\dfrac{2016.2017}{2016.2}\)

\(=1+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{2017}{2}\)

\(=\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{2017}{2}\)

\(=\dfrac{1}{2}\left(2+3+...+2017\right)\)

Đặt \(A=2+3+...+2017\)

\(=2017+2016+...+2\)

\(\Rightarrow2A=\left(2+2017\right)+\left(3+2016\right)+...+\left(2017+2\right)\) ( 2016 cặp số )

\(\Rightarrow2A=2019+2019+...+2019\) ( 2016 số )

\(\Rightarrow2A=4070304\)

\(\Rightarrow A=2035152\)

\(\Rightarrow P=1017576\)

Vậy...

13 tháng 5 2017

P= 1+1/2.3+1/3.6+...+1/2016.2033136

P= 1+3/2+2+...+2017/2

P= 2/2+3/2+4/2+...+2017/2

P=\(\dfrac{2+3+4+...+2017}{2}\)

P= \(\dfrac{2035152}{2}\)

P= 1017576