Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Tìm \(x\):
a) \(\dfrac{x}{5}=\dfrac{5}{6}+\dfrac{-19}{30}\)
\(\dfrac{x}{5}=\dfrac{1}{5}\)
\(\Rightarrow x=1\)
b) \(\dfrac{-5}{6}-x=\dfrac{7}{12}-\dfrac{1}{3}.x\)
\(\dfrac{-5}{6}-\dfrac{7}{12}=x-\dfrac{1}{3}.x\)
\(x-\dfrac{1}{3}.x=\dfrac{-17}{12}\)
\(\dfrac{2}{3}.x=\dfrac{-17}{12}\)
\(x=\dfrac{-17}{12}:\dfrac{2}{3}\)
\(x=\dfrac{-17}{8}\)
c) \(2016^3.2016^x=2016^8\)
\(2016^x=2016^8:2016^3\)
\(2016^x=2016^{8-3}\)
\(2016^x=2016^5\)
\(\Rightarrow x=5\)
d) \(\left(x+\dfrac{3}{4}\right):\dfrac{5}{2}=3\dfrac{1}{2}\)
\(\left(x+\dfrac{3}{4}\right):\dfrac{5}{2}=\dfrac{7}{2}\)
\(\left(x+\dfrac{3}{4}\right)=\dfrac{7}{2}.\dfrac{5}{2}\)
\(x+\dfrac{3}{4}=\dfrac{35}{4}\)
\(x=\dfrac{35}{4}-\dfrac{3}{4}\)
\(x=\dfrac{32}{4}=8\)
e) \(\left(2,8.x-2^5\right):\dfrac{2}{3}=3^2\)
\(\left(2,8.x-2^5\right)=9.\dfrac{2}{3}\)
\(2,8.x-2^5=6\)
\(2,8.x=6+32\)
\(2,8.x=38\)
\(x=38:2,8\)
\(x=\dfrac{95}{7}\)
f) \(\dfrac{4}{7}.x-\dfrac{2}{3}=\dfrac{2}{5}\)
\(\dfrac{4}{7}.x=\dfrac{2}{5}+\dfrac{2}{3}\)
\(\dfrac{4}{7}.x=\dfrac{16}{15}\)
\(x=\dfrac{16}{15}:\dfrac{4}{7}\)
\(x=\dfrac{28}{15}\)
g) \(\left(\dfrac{3x}{7}+1\right):\left(-4\right)=\dfrac{-1}{28}\)
\(\left(\dfrac{3x}{7}+1\right)=\dfrac{-1}{28}.\left(-4\right)\)
\(\dfrac{3x}{7}+1=\dfrac{1}{7}\)
\(\dfrac{3x}{7}=\dfrac{1}{7}-1\)
\(\dfrac{3x}{7}=\dfrac{-6}{7}\)
\(\Rightarrow3x=-6\)
\(x=\left(-6\right):3\)
\(x=-2\)
2. Thực hiện phép tính:
a) \(\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{2}{3}-\dfrac{1}{3}:\dfrac{3}{4}+1\dfrac{4}{5}\)
\(=\dfrac{1}{2}.\left(\dfrac{2}{3}+1\right)-\dfrac{1}{3}:\dfrac{3}{4}+\dfrac{9}{5}\)
\(=\dfrac{1}{2}.\dfrac{5}{3}-\dfrac{1}{3}:\dfrac{3}{4}+\dfrac{9}{5}\)
\(=\dfrac{5}{6}-\dfrac{4}{9}+\dfrac{9}{5}\)
\(=\dfrac{7}{18}+\dfrac{9}{5}\)
\(=\dfrac{197}{90}\)
b) \(\dfrac{7.5^2-7^2}{7.24+21}\)
\(=\dfrac{7.25-7.7}{7.24+7.3}\)
\(=\dfrac{7.\left(25-7\right)}{7.\left(24+3\right)}\)
\(=\dfrac{7.18}{7.27}\)
\(=\dfrac{2}{3}\)
c) \(\dfrac{2}{3}+\dfrac{1}{3}.\left(\dfrac{-4}{9}+\dfrac{5}{6}\right):\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{1}{3}.\dfrac{7}{18}:\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{7}{54}:\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{2}{9}\)
\(=\dfrac{8}{9}\)
1a.Vì \(\left|x\right|\) là 1 số tự nhiên nên \(\left|x\right|+2017\ge2017\)(1)
Mà ta đã biết:\(\dfrac{a}{b}\ge\dfrac{a}{b+n}\)với n là một số tự nhiên.
Nên từ (1)suy ra\(\dfrac{2016}{\left|x\right|+2017}\le\dfrac{2016}{2017}\)
Vậy để \(\dfrac{2016}{\left|x\right|+2017}\)lớn nhất thì \(\dfrac{2016}{\left|x\right|+2017}=\dfrac{2016}{2017}\)
1b.Ta thấy:
\(\dfrac{\left|x\right|+2016}{-2017}=\dfrac{-\left(\left|x\right|+2016\right)}{2017}\)
Để \(\dfrac{-\left(\left|x\right|+2016\right)}{2017}\)lớn nhất thì \(-\left(\left|x\right|+2016\right)\)lớn nhất
Mà theo câu a,ta có:\(\left|x\right|\)+2016 là một số tự nhiên nên \(-\left(\left|x\right|+2016\right)\)mang dấu âm hay \(-\left(\left|x\right|+2016\right)\le0\)( chú ý \(-0=0\))
Vậy để \(-\left(\left|x\right|+2016\right)\)lớn nhất hay \(\dfrac{\left|x\right|+2016}{-2017}\)lớn nhất thì \(\left|x\right|+2016=0\)
\(\Rightarrow\)Để \(\dfrac{\left|x\right|+2016}{-2017}\)lớn nhất thì nó bằng \(\dfrac{0}{-2017}\)hay nó bằng 0
2)
a)Để \(\dfrac{\left|x\right|+1945}{1975}\)nhỏ nhất thì \(\left|x\right|+1945\) nhỏ nhất
Vì \(\left|x\right|\ge0\) nên \(\left|x\right|+1945\ge1945\)
\(\Rightarrow\)Để \(\left|x\right|+1945\) nhỏ nhất thì \(\left|x\right|+1945\) = 1945
\(\Rightarrow\)Để \(\dfrac{\left|x\right|+1945}{1975}\)bé nhất thì nó phải bằng \(\dfrac{1945}{1975}\)hay\(\dfrac{389}{395}\)
b)Để \(\dfrac{-1}{\left|x\right|+1}\)thì \(\left|x\right|+1\)bé nhất
Vì \(\left|x\right|\ge0\) nên \(\left|x\right|+1\ge1\)
\(\Rightarrow\)Để \(\left|x\right|+1\)bé nhất thì \(\left|x\right|+1\)\(=1\)
\(\Rightarrow\)GTNN của \(\dfrac{-1}{\left|x\right|+1}\)là \(\dfrac{-1}{1}\) hay -1
Đặt \(S=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2016}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1008}\right)\)
\(=\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\)
Nên:
\(A=\left(\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right):\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\right)\)\(=\left(\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right):\left(\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}+\dfrac{1}{2016}\right)\)\(\Rightarrow A=1\)
Vậy A = 1
Chúc bạn học tốt!!
Các câu dễ tự làm :v
\(\dfrac{45-x}{1968}+\dfrac{40-x}{1973}+\dfrac{35-x}{1978}+\dfrac{30-x}{1981}=-4\) (sau khi đã sửa đề)
\(\Rightarrow\left(\dfrac{45-x}{1968}+1\right)+\left(\dfrac{40-x}{1973}+1\right)+\left(\dfrac{35-x}{1978}+1\right)+\left(\dfrac{30-x}{1981}+1\right)=0\)\(\Rightarrow\dfrac{2013-x}{1968}+\dfrac{2013-x}{1973}+\dfrac{2013-x}{1978}+\dfrac{2013-x}{1981}=0\)
\(\Rightarrow\left(2013-x\right)\left(\dfrac{1}{1968}+\dfrac{1}{1973}+\dfrac{1}{1978}+\dfrac{1}{1981}\right)=0\)
\(\Rightarrow2013-x=0\Rightarrow x=2013\)
\(1+5+9+13+17+.....+x=5050\)
Số các số hạng là:
\(\dfrac{x-1}{4}+1=\dfrac{1}{4}x+\dfrac{3}{4}\)
Như vậy có :
\(\left(\dfrac{1}{4}x+\dfrac{3}{4}\right):2\) số hạng
Theo đề bài ta có:
\(\left(\dfrac{1}{4}x+\dfrac{3}{4}\right):2\left(x+1\right)=5050\)
\(\Rightarrow\left(\dfrac{1}{4}x+\dfrac{3}{4}\right)\left(x+1\right)=10100\)
\(\Rightarrow\dfrac{1}{4}x^2+\dfrac{1}{4}x+\dfrac{3}{4}x+\dfrac{3}{4}=10100\)
\(\Rightarrow\dfrac{1}{4}x^2+x+\dfrac{3}{4}=10100\)
Kiệt sức.đến đây ko nghĩ nổi nx
a,
\(5^x+5^{x+2}=650\\ 5^x\left(1+5^2\right)=650\\ 5^x\cdot26=650\\ 5^x=25\\ 5^x=5^2\\ \Rightarrow x=2\)
Vậy \(x=2\)
b,
\(\left(x+2\right)^2=81\\ \Rightarrow\left[{}\begin{matrix}x+2=9\\x+2=-9\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=7\\x=-11\end{matrix}\right.\)
Vậy \(x=7\) hoặc \(x=-11\)
d,
\(\dfrac{45-x}{1968}+\dfrac{40-x}{1973}+\dfrac{35-x}{1978}+\dfrac{30-x}{1983}=-4\\ \dfrac{45-x}{1968}+\dfrac{40-x}{1973}+\dfrac{35-x}{1978}+\dfrac{30-x}{1983}+4=0\\ \dfrac{45-x}{1968}+1+\dfrac{40-x}{1973}+1+\dfrac{35-x}{1978}+1+\dfrac{30-x}{1983}+1=0\\ \dfrac{2013-x}{1968}+\dfrac{2013-x}{1973}+\dfrac{2013-x}{1978}+\dfrac{2013-x}{1983}=0\\ \left(2013-x\right)\left(\dfrac{1}{1968}+\dfrac{1}{1973}+\dfrac{1}{1978}+\dfrac{1}{1983}\right)=0\)
Vì \(\dfrac{1}{1968}+\dfrac{1}{1973}+\dfrac{1}{1978}+\dfrac{1}{1983}\ne0\) nên
\(2013-x=0\\ x=2013\)
Vậy \(x=2013\)
e,
\(\dfrac{1}{2016}:2015x=\dfrac{-1}{2015}\\ 2015x=\dfrac{-2015}{2016}\\ x=\dfrac{-1}{2016}\)
Vậy \(x=\dfrac{-1}{2016}\)
\(P=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{2016}\left(1+2+...+2016\right)\)\(=1+\dfrac{2.3}{2.2}+\dfrac{3.4}{3.2}+...+\dfrac{2016.2017}{2016.2}\)
\(=1+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{2017}{2}\)
\(=\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{2017}{2}\)
\(=\dfrac{1}{2}\left(2+3+...+2017\right)\)
Đặt \(A=2+3+...+2017\)
\(=2017+2016+...+2\)
\(\Rightarrow2A=\left(2+2017\right)+\left(3+2016\right)+...+\left(2017+2\right)\) ( 2016 cặp số )
\(\Rightarrow2A=2019+2019+...+2019\) ( 2016 số )
\(\Rightarrow2A=4070304\)
\(\Rightarrow A=2035152\)
\(\Rightarrow P=1017576\)
Vậy...
P= 1+1/2.3+1/3.6+...+1/2016.2033136
P= 1+3/2+2+...+2017/2
P= 2/2+3/2+4/2+...+2017/2
P=\(\dfrac{2+3+4+...+2017}{2}\)
P= \(\dfrac{2035152}{2}\)
P= 1017576
bài hay đấy để mk thử giải
à bạn xem lại câu a hộ mk với