Tìm x để M<4 biết M=\(\frac{4x-1}{x^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne\pm1\end{cases}}\)
Sao phân số thứ 2 là \(\frac{1-2}{1+x}\) .Bạn chép đề thật chuẩn mới trả lời đúng nhé
a, \(B=\left(\frac{9-3x}{x^2+4x-5}-\frac{x+5}{1-x}-\frac{x+1}{x+5}\right):\frac{7x-14}{x^2-1}\)
\(=\left(\frac{9-3x}{\left(x-1\right)\left(x+5\right)}+\frac{\left(x+5\right)^2}{\left(x-1\right)\left(x+5\right)}-\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+5\right)}\right):\frac{7\left(x-2\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{9-3x+x^2+10x+25-x^2+1}{\left(x-1\right)\left(x+5\right)}.\frac{\left(x-1\right)\left(x+1\right)}{7\left(x-2\right)}\)
\(=\frac{35+7x}{x+5}\frac{x+1}{7\left(x-2\right)}=\frac{7\left(x+5\right)\left(x+1\right)}{7\left(x+5\right)\left(x-2\right)}=\frac{x+1}{x-2}\)
b, Ta có : \(\left(x+5\right)^2-9x-45=0\)
\(\Leftrightarrow x^2+10x+25-9x-45=0\Leftrightarrow x^2+x-20=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)
TH1 : Thay x = 4 vào biểu thức ta được : \(\frac{4+1}{4-2}=\frac{5}{2}\)
TH2 : THay x = 5 vào biểu thức ta được : \(\frac{5+1}{5-2}=\frac{6}{3}=2\)
c, Để B nhận giá trị nguyên khi \(\frac{x+1}{x-2}\inℤ\Rightarrow x-2+3⋮x-2\)
\(\Leftrightarrow3⋮x-2\Rightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
x - 2 | 1 | -1 | 3 | -3 |
x | 3 | 1 | 5 | -1 |
d, Ta có : \(B=-\frac{3}{4}\Rightarrow\frac{x+1}{x-2}=-\frac{3}{4}\)ĐK : \(x\ne2\)
\(\Rightarrow4x+4=-3x+6\Leftrightarrow7x=2\Leftrightarrow x=\frac{2}{7}\)( tmđk )
e, Ta có B < 0 hay \(\frac{x+1}{x-2}< 0\)
TH1 : \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}}}\)( ktm )
TH2 : \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Rightarrow-1< x< 2}\)
a) Ta có: \(A=\left(\frac{3}{2x+4}+\frac{x}{2-x}+\frac{2x^2+3}{x^2-4}\right):\frac{2x-1}{4x-8}\)
\(=\left(\frac{3\left(x-2\right)}{2\left(x+2\right)\left(x-2\right)}-\frac{2x\left(x+2\right)}{2\left(x-2\right)\left(x+2\right)}+\frac{2\left(2x^2+3\right)}{2\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{4\left(x-2\right)}{2x-1}\)
\(=\frac{3x-6-2x^2-4x+4x^2+6}{2\left(x-2\right)\left(x+2\right)}\cdot\frac{4\left(x-2\right)}{2x-1}\)
\(=\frac{2x^2-x}{2\left(x-2\right)\left(x+2\right)}\cdot\frac{4\left(x-2\right)}{2x-1}\)
\(=\frac{x\left(2x-1\right)\cdot4\left(x-2\right)}{2\left(x-2\right)\left(x+2\right)\cdot\left(2x-1\right)}\)
\(=\frac{2x}{x+2}\)
b)
ĐKXĐ: \(x\notin\left\{2;-2;\frac{1}{2}\right\}\)
Để A<2 thì A-2<0
hay \(\frac{2x}{x+2}-2< 0\)
\(\Leftrightarrow\frac{2x}{x+2}-\frac{2\left(x+2\right)}{x+2}< 0\)
\(\Leftrightarrow\frac{2x-2x-4}{x+2}< 0\)
\(\Leftrightarrow\frac{-4}{x+2}< 0\)
\(\Leftrightarrow-4;x+2\) khác dấu
mà -4<0
nên x+2>0
hay x>-2
mà \(x\notin\left\{2;-2;\frac{1}{2}\right\}\)
nên \(\left\{{}\begin{matrix}x>-2\\x\notin\left\{\frac{1}{2};2\right\}\end{matrix}\right.\)
Vậy: Để A<2 thì \(\left\{{}\begin{matrix}x>-2\\x\notin\left\{\frac{1}{2};2\right\}\end{matrix}\right.\)
c) Ta có: |x-1|=3
\(\Leftrightarrow\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(nhận\right)\\x=-2\left(loại\right)\end{matrix}\right.\)
Thay x=4 vào biểu thức \(A=\frac{2x}{x+2}\), ta được:
\(\frac{2\cdot4}{4+2}=\frac{8}{6}=\frac{4}{3}\)
Vậy: \(\frac{4}{3}\) là giá trị của biểu thức \(A=\frac{2x}{x+2}\) tại x=4
d) Để |A|=1 thì
\(\left[{}\begin{matrix}A=1\\A=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{2x}{x+2}=1\\\frac{2x}{x+2}=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=x+2\\2x=-x-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-x=2\\2x+x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(loại\right)\\3x=-2\end{matrix}\right.\Leftrightarrow x=\frac{-2}{3}\)
Vậy: Để |A|=1 thì \(x=\frac{-2}{3}\)
a) \(=\frac{x-x+2}{x^2-4}:\frac{1-x+2}{x-2}\)ĐKXĐ:x\(\ne+-2\)
\(=\frac{2}{x^2-4}.\frac{x-2}{3-x}=\frac{2}{\left(x+2\right)\left(3-x\right)}\)
=\(\frac{2}{-x^2-x+6}\)
Ta có: \(B=\left(\frac{4x}{x+2}+\frac{8x^2}{4-x^2}\right):\left(\frac{x-1}{x^2-2x}-\frac{2}{x}\right)\)
\(=\left(\frac{4x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{8x^2}{\left(x-2\right)\left(x+2\right)}\right):\left(\frac{x-1}{x\left(x-2\right)}-\frac{2\left(x-2\right)}{x\left(x-2\right)}\right)\)
\(=\frac{4x^2-8x-8x^2}{\left(x-2\right)\left(x+2\right)}:\frac{x-1-2x+4}{\left(x-2\right)}\)
\(=\frac{-4x^2-8x}{\left(x-2\right)\left(x+2\right)}\cdot\frac{x-2}{3-x}\)
\(=\frac{-4x\left(x+2\right)}{x+2}\cdot\frac{1}{3-x}\)
\(=-\frac{4x}{3-x}=\frac{4x}{x-3}\)
a) ĐKXĐ: \(x\notin\left\{2;-2;0;3\right\}\)
Để B=-1 thì \(\frac{4x}{x-3}=-1\)
\(\Leftrightarrow4x=3-x\)
\(\Leftrightarrow4x+x=3\)
\(\Leftrightarrow5x=3\)
hay \(x=\frac{3}{5}\)(nhận)
Vậy: Để B=-1 thì \(x=\frac{3}{5}\)
b) Sửa đề: Tìm x để B<0
Để B<0 thì \(\frac{4x}{x-3}< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4x>0\\x-3< 0\end{matrix}\right.\\\left\{{}\begin{matrix}4x< 0\\x-3>0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x< 3\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x>3\end{matrix}\right.\end{matrix}\right.\Leftrightarrow0< x< 3\)
Kết hợp ĐKXĐ, ta được:
\(\left\{{}\begin{matrix}0< x< 3\\x\ne2\end{matrix}\right.\)
Vậy: Để B<0 thì \(\left\{{}\begin{matrix}0< x< 3\\x\ne2\end{matrix}\right.\)
M = \(\left(\frac{9}{x\left(x^2-9\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)
<=> M =
a) ĐKXĐ: \(x\ne-2;x\ne2\), rút gọn:
\(A=\left[\frac{3\left(x-2\right)-2x\left(x+2\right)+2\left(2x^2+3\right)}{2\left(x-2\right)\left(x+2\right)}\right]\div\frac{2x-1}{4\left(x-2\right)}\)
\(A=\frac{3x-6-2x^2-4x+4x^2+6}{2\left(x-2\right)\left(x+2\right)}\cdot\frac{4\left(x-2\right)}{2x-1}=\frac{4\left(2x^2-x\right)}{x\left(x+2\right)\left(2x-1\right)}=\frac{4x\left(2x-1\right)}{x\left(x+2\right)\left(2x-1\right)}=\frac{4}{x+2}\)
b) Ta có: \(\left|x-1\right|=3\Leftrightarrow\hept{\begin{cases}x-1=3\\x-1=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\left(n\right)\\x=-2\left(l\right)\end{cases}}}\)
=> Khi \(x=4\)thì \(A=\frac{4}{4+2}=\frac{4}{6}=\frac{2}{3}\)
c) \(A< 2\Leftrightarrow\frac{4}{x+2}< 2\Leftrightarrow4< 2x+4\Leftrightarrow0< 2x\Leftrightarrow x>0\)Vậy \(A< 2,\forall x>0\)
d) \(\left|A\right|=1\Leftrightarrow\left|\frac{4}{x+2}\right|=1\Leftrightarrow\hept{\begin{cases}\frac{4}{x+2}=1\\\frac{4}{x+2}=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\left(l\right)\\x=-6\left(n\right)\end{cases}}}\)Vậy \(\left|A\right|=1\)khi và chỉ khi x = -6
\(\frac{4x-1}{x^2}< 4\)
\(\Leftrightarrow\)\(4x^2>4x-1\)
\(\Leftrightarrow\)\(4x^2-4x+1>0\)
\(\Leftrightarrow\)\(\left(2x-1\right)^2>0\)
Mà \(\left(2x-1\right)^2\ge0\) nên để \(\left(2x-1\right)^2>0\) thì \(2x-1\ne0\)\(\Leftrightarrow\)\(x\ne\frac{1}{2}\)
Vậy để \(M< 4\) thì \(x\ne\frac{1}{2}\)
Chúc bạn học tốt ~