Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Đkxđ: x\(\ge\)0 x\(\ne\)4
=\(\frac{3\left(\sqrt{x}+2\right)+2\left(\sqrt{x}-2\right)+8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
=\(\frac{5\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
=\(\frac{5}{\sqrt{x}-2}\)
b/ Với x\(\ge\)0 vã\(\ne\)4
Để M\(\in\)Z \(\Leftrightarrow\) \(\frac{5}{\sqrt{x}-2}\in Z\)
\(\Rightarrow\) \(\sqrt{x}-2\inƯ\left(5\right)\)
\(\begin{cases}\sqrt{x}-2=5\\\sqrt{x}-2=-5\\\sqrt{x}-2=1\\\sqrt{x}-2=-1\end{cases}\Rightarrow\begin{cases}x=49\left(tmĐKXĐ\right)\\KhongcogiatriTm\\x=9\left(tmĐKXĐ\right)\\x=1\left(tmĐKXĐ\right)\end{cases}\)
Vậy để M\(\in\)Z thì x=.....
c/ Với...
Để M<2 thì \(\frac{5}{\sqrt{x}-2}< 2\Rightarrow\frac{5-2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}< 0\)
\(\left[\begin{array}{nghiempt}\hept{\begin{cases}9-2\sqrt{x}>0\\\sqrt{x}-2< 0\end{array}\right.\\\hept{\begin{cases}9-2\sqrt{x}< 0\\\sqrt{x}-2>0\end{array}\right.\end{array}\right.\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}x< \frac{81}{4}\\x< 4\end{array}\right.\\\hept{\begin{cases}x>\frac{81}{4}\\x>4\end{array}\right.\end{cases}\Rightarrow\left[\begin{array}{nghiempt}x< 4\\x>\frac{81}{4}\end{array}\right.}\)
\(M^2=\frac{x}{\left(\sqrt{x}+2\right)^2}=\frac{x}{x+4\sqrt{x}+4}\)
Để \(M^2< \frac{1}{4}\)thì
\(\frac{x}{x+4\sqrt{x}+4}< \frac{1}{4}\)
\(\Leftrightarrow4x< x+4\sqrt{x}+4\)
\(\Leftrightarrow3x-4\sqrt{x}-4< 0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(3\sqrt{x}+2\right)< 0\)(1)
Do \(\sqrt{x}-2< 3\sqrt{x}+2\)
Nên \(\left(1\right)\Leftrightarrow\hept{\begin{cases}\sqrt{x}-2< 0\\3\sqrt{x}+2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}< 2\\3\sqrt{x}>-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x< 4\\\sqrt{x}>-\frac{2}{3}\left(LuonĐung\right)\end{cases}}\)
Vậy x < 4
ĐKXĐ : \(x\ne\pm1\)
Pt \(\frac{m}{x-1}+\frac{4x}{x+1}\) đưa về dạng \(\left(m-4\right)x=-\left(m+4\right)\)
+) Nếu m=4
\(\Rightarrow0x=-8\) (vô nghiệm)
+) Nếu m khác 4
\(\Rightarrow x=\frac{4+m}{4-m}\)
đk : \(\frac{4+m}{4-m}\ne1\)hay \(m\ne0\)
\(\frac{4+m}{4-m}\ne-1\) đúng với mọi m
Để \(x\ge-2\)thì \(\frac{4+m}{4-m}\ge2\)
\(\Leftrightarrow\frac{12-m}{4-m}\ne1\)
\(\Leftrightarrow\orbr{\begin{cases}m< 4\\m\ge12\end{cases}}\)
Vậy .....
\(\frac{4x-1}{x^2}< 4\)
\(\Leftrightarrow\)\(4x^2>4x-1\)
\(\Leftrightarrow\)\(4x^2-4x+1>0\)
\(\Leftrightarrow\)\(\left(2x-1\right)^2>0\)
Mà \(\left(2x-1\right)^2\ge0\) nên để \(\left(2x-1\right)^2>0\) thì \(2x-1\ne0\)\(\Leftrightarrow\)\(x\ne\frac{1}{2}\)
Vậy để \(M< 4\) thì \(x\ne\frac{1}{2}\)
Chúc bạn học tốt ~