Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(x\ne-2;x\ne2\), rút gọn:
\(A=\left[\frac{3\left(x-2\right)-2x\left(x+2\right)+2\left(2x^2+3\right)}{2\left(x-2\right)\left(x+2\right)}\right]\div\frac{2x-1}{4\left(x-2\right)}\)
\(A=\frac{3x-6-2x^2-4x+4x^2+6}{2\left(x-2\right)\left(x+2\right)}\cdot\frac{4\left(x-2\right)}{2x-1}=\frac{4\left(2x^2-x\right)}{x\left(x+2\right)\left(2x-1\right)}=\frac{4x\left(2x-1\right)}{x\left(x+2\right)\left(2x-1\right)}=\frac{4}{x+2}\)
b) Ta có: \(\left|x-1\right|=3\Leftrightarrow\hept{\begin{cases}x-1=3\\x-1=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\left(n\right)\\x=-2\left(l\right)\end{cases}}}\)
=> Khi \(x=4\)thì \(A=\frac{4}{4+2}=\frac{4}{6}=\frac{2}{3}\)
c) \(A< 2\Leftrightarrow\frac{4}{x+2}< 2\Leftrightarrow4< 2x+4\Leftrightarrow0< 2x\Leftrightarrow x>0\)Vậy \(A< 2,\forall x>0\)
d) \(\left|A\right|=1\Leftrightarrow\left|\frac{4}{x+2}\right|=1\Leftrightarrow\hept{\begin{cases}\frac{4}{x+2}=1\\\frac{4}{x+2}=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\left(l\right)\\x=-6\left(n\right)\end{cases}}}\)Vậy \(\left|A\right|=1\)khi và chỉ khi x = -6
Câu 1 :
a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)
b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)
\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)
\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)
\(\Leftrightarrow2x^2+8x+6=0\)
\(\Leftrightarrow x^2+4x+4-1=0\)
\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)
Vậy : \(x=-3\) thì P = 1.
a,\(ĐKXĐ:\hept{\begin{cases}x\ne\mp2\\x\ne3\\x\ne0\end{cases}}\)
\(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)
\(=\left[\frac{\left(x+2\right)^2}{\left(2-x\right)\left(x+2\right)}+\frac{4x^2}{\left(2-x\right)\left(x+2\right)}-\frac{\left(2-x\right)^2}{\left(2-x\right)\left(x+2\right)}\right]:\left[\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\right]\)
\(=\frac{x^2+4x+4+4x^2-4+4x-x^2}{\left(2-x\right)\left(x+2\right)}.\frac{x\left(2-x\right)}{x-3}\)
\(=\frac{4x\left(x+2\right)}{x+2}.\frac{x}{x-3}=\frac{4x^2}{x-3}\)
a) Ta có: \(A=\left(\frac{3}{2x+4}+\frac{x}{2-x}+\frac{2x^2+3}{x^2-4}\right):\frac{2x-1}{4x-8}\)
\(=\left(\frac{3\left(x-2\right)}{2\left(x+2\right)\left(x-2\right)}-\frac{2x\left(x+2\right)}{2\left(x-2\right)\left(x+2\right)}+\frac{2\left(2x^2+3\right)}{2\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{4\left(x-2\right)}{2x-1}\)
\(=\frac{3x-6-2x^2-4x+4x^2+6}{2\left(x-2\right)\left(x+2\right)}\cdot\frac{4\left(x-2\right)}{2x-1}\)
\(=\frac{2x^2-x}{2\left(x-2\right)\left(x+2\right)}\cdot\frac{4\left(x-2\right)}{2x-1}\)
\(=\frac{x\left(2x-1\right)\cdot4\left(x-2\right)}{2\left(x-2\right)\left(x+2\right)\cdot\left(2x-1\right)}\)
\(=\frac{2x}{x+2}\)
b)
ĐKXĐ: \(x\notin\left\{2;-2;\frac{1}{2}\right\}\)
Để A<2 thì A-2<0
hay \(\frac{2x}{x+2}-2< 0\)
\(\Leftrightarrow\frac{2x}{x+2}-\frac{2\left(x+2\right)}{x+2}< 0\)
\(\Leftrightarrow\frac{2x-2x-4}{x+2}< 0\)
\(\Leftrightarrow\frac{-4}{x+2}< 0\)
\(\Leftrightarrow-4;x+2\) khác dấu
mà -4<0
nên x+2>0
hay x>-2
mà \(x\notin\left\{2;-2;\frac{1}{2}\right\}\)
nên \(\left\{{}\begin{matrix}x>-2\\x\notin\left\{\frac{1}{2};2\right\}\end{matrix}\right.\)
Vậy: Để A<2 thì \(\left\{{}\begin{matrix}x>-2\\x\notin\left\{\frac{1}{2};2\right\}\end{matrix}\right.\)
c) Ta có: |x-1|=3
\(\Leftrightarrow\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(nhận\right)\\x=-2\left(loại\right)\end{matrix}\right.\)
Thay x=4 vào biểu thức \(A=\frac{2x}{x+2}\), ta được:
\(\frac{2\cdot4}{4+2}=\frac{8}{6}=\frac{4}{3}\)
Vậy: \(\frac{4}{3}\) là giá trị của biểu thức \(A=\frac{2x}{x+2}\) tại x=4
d) Để |A|=1 thì
\(\left[{}\begin{matrix}A=1\\A=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{2x}{x+2}=1\\\frac{2x}{x+2}=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=x+2\\2x=-x-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-x=2\\2x+x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(loại\right)\\3x=-2\end{matrix}\right.\Leftrightarrow x=\frac{-2}{3}\)
Vậy: Để |A|=1 thì \(x=\frac{-2}{3}\)