Tìm x để biểu thức sau đạt giá trị lớn nhất
Hãy tìm giá trị lớn nhất đố
A=\(\dfrac{2026}{\left|x-2013\right|+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : |x-2013| ≥ 0 với mọi x
=> |x-2013|+2≥ 2
=>\(\frac{2016}{\left|x-2013\right|+2}\)≤ \(\frac{2016}{2}\)
=> Max A =1008
<=> x-2013=0
<=> x=2013
Vì \(\left|x-2013\right|\ge0\Rightarrow\left|x-2013\right|+2\ge2\Rightarrow A=\frac{2026}{\left|x-2013\right|+2}\le1013\)
=>A đạt giá trị lớn nhất là 1013 khi \(\left|x-2013\right|=0\Leftrightarrow x-2013=0\Leftrightarrow x=2013\)
Vậy A đạt giá trị lớn nhất là 1013 khi x=2013
x càng lớn thì \(\left|x-2013\right|\) càng lớn \(\Rightarrow2026\left|x-2013\right|+2\) càng lớn
=> A không có max
Mình nghĩ đề là tìm giá trị nhỏ nhất
\(\left|x-2013\right|\ge0\Rightarrow2026\left|x-2013\right|\ge0\Rightarrow2026\left|x-2013\right|+2\ge2\)
Dấu "=" xảy ra tại x=2013
Vậy A có GTNN là 2 khi x=2013
A = 2026 / | x - 2013 | + 2
Để A đạt giá trị lớn nhất
\(\Leftrightarrow\)| x - 2013 | + 2 đạt giá trị nhỏ nhất
Ta có :
C = | x - 2013 | + 2
C = | x - 2013 | + 2 \(\ge\)2
Dấu " = " xảy ra \(\Leftrightarrow\)x - 2013 = 0
\(\Rightarrow\) x = 2013
Do đó : Min C = 2\(\Leftrightarrow\)x = 2013
Vậy : Max A = 2026 / 2 = 1013 \(\Leftrightarrow\)x = 2013
Câu hỏi của Nguyễn Quỳnh Chi - Toán lớp 7 - Học toán với OnlineMath
Vì |x−2013|≥0⇒|x−2013|+2≥2
⇒A=\(\frac{2026}{\left|x-2013\right|+2}\) ≤1013
=>A đạt giá trị lớn nhất là 1013 khi |x−2013|=0
⇔x−2013=0
⇔x=2013
Vậy A đạt giá trị lớn nhất là 1013 khi x=2013
Câu hỏi của Nguyễn Quỳnh Chi - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
Để \(\frac{2006}{\left|x-2013\right|+7}\) lớn nhất thì \(\left|x-2013\right|+7\) bé nhất
Đặt \(C=\left|x-2013\right|+7\)
Ta có:\(\left|x-2013\right|\ge0\)
\(\Rightarrow\left|x-2013\right|+7\ge7\)
\(\Rightarrow MinC=7\) khi x=2013
\(A=0,6+\left|\dfrac{1}{2}-x\right|\\ Vì:\left|\dfrac{1}{2}-x\right|\ge\forall0x\in R\\ Nên:A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\forall x\in R\\ Vậy:min_A=0,6\Leftrightarrow\left(\dfrac{1}{2}-x\right)=0\Leftrightarrow x=\dfrac{1}{2}\)
\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\\ Vì:\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\\ Nên:B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\forall x\in R\\ Vậy:max_B=\dfrac{2}{3}\Leftrightarrow\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow x=-\dfrac{1}{3}\)
Vì \(\left|x-2013\right|\ge0\)
\(\Rightarrow\left|x-2013\right|+2\ge2\)
\(\Rightarrow\dfrac{2026}{\left|x-2013\right|+2}\ge\dfrac{2026}{2}\)
\(\Rightarrow A\ge1013\)
Dấu \("="\) xảy ra khi \(\left|x-2013\right|=0\)
\(\Rightarrow x-2013=0\)
\(\Rightarrow x=2013\)
Vậy GTLN của \(A=1013\) khi \(x=2013.\)
Sai rồi bạn