Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(A=0,6+\left|\dfrac{1}{2}-x\right|\)
Ta có : \(\left|\dfrac{1}{2}-x\right|\ge0\)
\(\Leftrightarrow0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\)
Vậy GTNN là 0,6 khi \(x=\dfrac{1}{2}.\)
- Đề ghi ko hiểu ?
b ) \(\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\)
Ta có : \(\left|2x+\dfrac{2}{3}\right|\ge0\)
\(\Leftrightarrow\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\)
Vậy GTNN là \(\dfrac{2}{3}\Leftrightarrow x=-\dfrac{1}{3}\)
\(A=0,6+\left|\dfrac{1}{2}-x\right|\)
\(\left|\dfrac{1}{2}-x\right|\ge0\forall x\in R\)
\(A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\)
Dấu "=" xảy ra khi:
\(\left|\dfrac{1}{2}-x\right|=0\Rightarrow x=\dfrac{1}{2}\)
\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\)
\(\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\)
\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\)
Dấu "=" xảy ra khi:
\(\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow2x=-\dfrac{2}{3}\Leftrightarrow x=-\dfrac{1}{3}\)
\(A=2x^2-2\ge-2\)
Dấu "=" xảy ra khi: \(x=0\)
\(B=\left|x+\dfrac{1}{3}\right|-\dfrac{1}{6}\ge-\dfrac{1}{6}\)
Dấu "=" xảy ra khi: \(x=-\dfrac{1}{3}\)
\(C=\dfrac{\left|x\right|+2017}{2018}\ge\dfrac{2017}{2018}\)
Dấu "=" xảy ra khi: \(x=0\)
\(D=3-\left(x+1\right)^2\le3\)
Dấu "=" xảy ra khi: \(x=-1\)
\(E-\left|0,1+x\right|-1,9\le-1,9\)
Dấu "=" xảy ra khi: \(x=-0,1\)
\(F=\dfrac{1}{\left|x\right|+2017}\le\dfrac{1}{2017}\)
Dấu "=" xảy ra khi: \(x=0\)
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
Bài 1:
\(\left\{{}\begin{matrix}\left|x-\dfrac{1}{2}\right|\ge0\forall x\\\left|x+y\right|\ge0\forall x,y\end{matrix}\right.\Rightarrow\left|x-\dfrac{1}{2}\right|+\left|x+y\right|\ge0\forall x,y\)
Vì vậy, để tìm được x, y thỏa mãn đề bài thì \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\x+y=0\end{matrix}\right.\)
Từ đó, ta tìm được \(x=\dfrac{1}{2}\) và \(y=-\dfrac{1}{2}\)
Bài 2:
\(A=\left|x-\dfrac{3}{4}\right|\)
Ta thấy \(\left|x-\dfrac{3}{4}\right|\ge0\forall x\Rightarrow A\ge0\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x-\dfrac{3}{4}\right|=0\Leftrightarrow x-\dfrac{3}{4}=0\Leftrightarrow x=\dfrac{3}{4}\)
Vậy GTNN của A là 0 khi \(x=\dfrac{3}{4}\)
\(B=\left|x+\dfrac{2}{3}\right|+2\)
\(\left|x+\dfrac{2}{3}\right|\ge0\forall x\) nên \(\left|x+\dfrac{2}{3}\right|+2\ge2\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left|x+\dfrac{2}{3}\right|=0\Leftrightarrow x+\dfrac{2}{3}=0\Leftrightarrow x=-\dfrac{2}{3}\)
Vậy GTNN của B là 2 khi \(x=-\dfrac{2}{3}\)
1 . Ta có : x2\(\ge0\) với \(\forall x\)
3|y-2|\(\ge0\) với \(\forall\)y
\(\Rightarrow x^2+3\left|y-2\right|\ge0voi\forall x\)
\(\Rightarrow C\ge-1voi\forall x\) và y
Dấu"=" xảy ra khi x2 = 0 và 3|y-2| = 0
Từ đó tính ra x = .. y=
Vậy Min C=-1\(\Leftrightarrow x=0;y=2\)
Bài 2:
Giải:
Do \(\left|x-2\right|+3\ge0\) nên để B lớn nhất thì \(\left|x-2\right|+3\) nhỏ nhất
Ta có: \(\left|x-2\right|\ge0\)
\(\Rightarrow\left|x-2\right|+3\ge3\)
\(\Rightarrow B=\dfrac{1}{\left|x-2\right|+3}\le\dfrac{1}{3}\)
Dấu " = " khi \(x-2=0\Rightarrow x=2\)
Vậy \(MAX_B=\dfrac{1}{3}\) khi x = 2
\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\)
Vì \(\left|2x+\dfrac{2}{3}\right|\ge0\Rightarrow\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\)
=> MaxB=2/3 => 2x+2/3=0 <=> x=-1/3
Vậy MaxB=2/3 khi x=-1/3
\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\)
\(\text{Ta có : }\left|2x+\dfrac{2}{3}\right|\ge0\text{ }\forall\text{ }x\\ \Rightarrow B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\)
\(\text{Dấu "=" xảy ra khi : }\left|2x+\dfrac{2}{3}\right|=0\\ \Leftrightarrow2x+\dfrac{2}{3}=0\\ \Leftrightarrow2x=-\dfrac{2}{3}\\ \Leftrightarrow x=-\dfrac{1}{3}\)
Vậy \(x=-\dfrac{1}{3}\)
\(A=0,6+\left|\dfrac{1}{2}-x\right|\\ Vì:\left|\dfrac{1}{2}-x\right|\ge\forall0x\in R\\ Nên:A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\forall x\in R\\ Vậy:min_A=0,6\Leftrightarrow\left(\dfrac{1}{2}-x\right)=0\Leftrightarrow x=\dfrac{1}{2}\)
\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\\ Vì:\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\\ Nên:B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\forall x\in R\\ Vậy:max_B=\dfrac{2}{3}\Leftrightarrow\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow x=-\dfrac{1}{3}\)