K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2018

\(x^{19}+x^5-x^{2017}=\left(x^{19}-x\right)+\left(x^5-x\right)-\left(x^{2017}-x\right)+x\)

\(=x\left[\left(x^2\right)^9-1\right]+x\left[\left(x^2\right)^2-1\right]-x\left[\left(x^2\right)^{1008}-1\right]+x\)

\(=x\left(x^2-1\right).A_{\left(x\right)}+x\left(x^2-1\right)B_{\left(x\right)}-x\left(x^2-1\right)C_{\left(x\right)}+x\)

\(=x\left(x^2-1\right)\left(A_{\left(x\right)}+B_{\left(x\right)}+C_{\left(x\right)}\right)+x\)

Vậy số dư là x 

25 tháng 10 2022

Câu 2: 

\(2n^2-7n+6⋮2n-1\)

\(\Leftrightarrow2n^2-n-6n+3+3⋮2n-1\)

\(\Leftrightarrow2n-1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{1;0;2;-1\right\}\)

Câu 3: 

\(-x^2+x-3\)

\(=-\left(x^2-x+3\right)\)

\(=-\left(x^2-x+\dfrac{1}{4}+\dfrac{11}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{11}{4}< 0\)

4 tháng 6 2018

8 tháng 2 2021

Vì \(x^{2017}-ax^{2016}+ax-1⋮\left(x-1\right)^2\Rightarrow x^{2017}-ax^{2016}+ax-1=\left(x-1\right)^2.Q\left(x\right)\text{đúng}\forall x\)

Thay x = 1 vào đẳng thức trên, ta có: 

1 - a + a - 1 = 0 (đúng) => Có vô số số hữu tỉ a thoả mãn để bài

8 tháng 2 2021

Mình nghĩ là chia hết cho (x+1)2 thì mới đúng => a = -1 ( Làm tương tự như trên thay x = -1 vào đẳng thức rồi tìm a) 

20 tháng 11 2021

Đặt phần dư là \(ax+b\)

\(\Leftrightarrow1+x+x^{19}+x^{199}+x^{1995}=\left(1-x^2\right)\cdot a\left(x\right)+ax+b\\ \Leftrightarrow1+x+x^{19}+x^{199}+x^{1995}=\left(1-x\right)\left(1+x\right)\cdot a\left(x\right)+ax+b\)

Thay \(x=1\Leftrightarrow a+b=5\left(1\right)\)

Thay \(x=-1\Leftrightarrow b-a=-3\left(2\right)\)

\(\left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=1\end{matrix}\right.\)

Vậy đa thức dư là \(4x+1\)

20 tháng 11 2021

Đặt phần dư là ax+bax+b

⇔1+x+x19+x199+x1995=(1−x2)⋅a(x)+ax+b⇔1+x+x19+x199+x1995=(1−x)(1+x)⋅a(x)+ax+b⇔1+x+x19+x199+x1995=(1−x2)⋅a(x)+ax+b⇔1+x+x19+x199+x1995=(1−x)(1+x)⋅a(x)+ax+b

Thay x=1⇔a+b=5(1)x=1⇔a+b=5(1)

Thay x=−1⇔b−a=−3(2)x=−1⇔b−a=−3(2)

(1)(2)⇔{a=4b=1(1)(2)⇔{a=4b=1

Vậy đa thức dư là 4x+1

Mình xp giúp được mỗi câu đầu thôi nha ;-;;;; 2 câu sau mình chưa học, bạn thông cảm ;-;;;.

`a,` \(\text{P(x) =}\)\(2x^3-3x+x^5-4x^3+4x-x^5+x^2-2\)

`P(x)= (2x^3 - 4x^3)-(3x-4x) +(x^5-x^5) +x^2-2`

`P(x)= -2x^3- (-x)+0+x^2-2`

`P(x)=-2x^3+x+x^2-2`

`Q(x)= x^3-x^2+3x+1+3x^2`

`Q(x)= x^3- (x^2-3x^2) +3x+1`

`Q(x)=x^3- (-2x^2)+3x+1`

 

18 tháng 12 2017

a) \(P\left(1\right)=1-a+b-c+d-2010=-2011\)

\(\Rightarrow a-b+c-d=2\)

\(P\left(-1\right)=-1-a-b-c-d-2010=-2045\)

\(\Rightarrow a+b+c+d=34\)

\(\Rightarrow\hept{\begin{cases}2b+2d=32\\2a+2c=36\end{cases}}\Leftrightarrow\hept{\begin{cases}b+d=16\\a+c=18\end{cases}}\)

\(P\left(2\right)=32-16a+8b-4c+2d-2010\)

\(=-12a-4\left(a+c\right)+2\left(b+d\right)+6b-1978\)

\(=-12a-4.18+2.16+6b-1978\)

\(=-12a+6b-2018=-2084\)

\(\Rightarrow2a-b=11\)

\(P\left(3\right)=243-81a+27b-9c+3d-2010\)

\(=243-72a-9\left(a+c\right)+3\left(b+d\right)+24b-2010\)

\(=243-72a+24b-9.18+3.16-2010=-2385\)

\(\Rightarrow-72a+24b=-504\Rightarrow3a-b=21\)

Từ đó ta có  \(\hept{\begin{cases}2a-b=11\\3a-b=21\end{cases}\Rightarrow\hept{\begin{cases}a=10\\b=9\end{cases}\Rightarrow}\hept{\begin{cases}c=8\\d=7\end{cases}}}\)

Vậy đa thức cần tìm là \(f\left(x\right)=x^5+10x^4+9x^3+8x^2+7x-2010\)

25 tháng 5 2016

nếu mình học lớp 8 rồi thì mình giải giúp cho bạn

25 tháng 5 2016

chưa chắc lớp 8 giải dc mà cũng nói

28 tháng 3 2017

Ta có đa thức  x 2 + 3 x + 2 5 + x 2 - 4 x - 4 5 - 1 chưa (x + 1) nên phần dư là một hằng số

Gọi thương là Q(x) và dư r. Khi đó với mọi x ta có

x 2 + 3 x + 2 5 + x 2 - 4 x - 4 5 - 1   = Q(x)(x + 1) + r           (1)

Thay x = -1 vào (1) ta được

( ( - 1 ) 2   +   3 . ( - 1 )   +   2 ) 5   +   ( ( - 1 ) 2   –   4 ( - 1 )   –   4 ) 5 – 1 = Q(x).(-1 + 1) + r

r = 0 5   +   1 5 – 1 ó r = 0

vậy phần dư của phép chia là r = 0. 

đáp án cần chọn là: C