Cho hình bình hành ABCD có M là trung điểm BC. Gọi N là giao điểm của AM và BD. P là giao điểm của AD với CN.
a) Chứng Minh : AP = AD
b) Nếu AB = AC. So sánh CP và BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Ta có
BC//AD (cạnh đối hình bình hành) => BM//AD
\(\Rightarrow\dfrac{BM}{AD}=\dfrac{MN}{AN}\) (Hệ quả định lý Talet) (1)
BC//AD => CM//AP
\(\Rightarrow\dfrac{CM}{AP}=\dfrac{MN}{AN}\) (Hệ quả định lý Talet) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{BM}{AD}=\dfrac{CM}{AP}\) Mà BM=CM (gt)
=> AP=AD (đpcm)
b/
Ta có
BC//AD => BC//DP \(\Rightarrow\dfrac{BN}{DN}=\dfrac{CN}{PN}\) (Hệ quả định lý Talet)
\(\Rightarrow\dfrac{BN}{CN}=\dfrac{DN}{PN}=\dfrac{BN+DN}{CN+PN}=\dfrac{BD}{CP}=1\)
\(\Rightarrow DN=PN\) => tg DPN cân tại N \(\Rightarrow\widehat{CPD}=\widehat{BDP}\) (góc ở đáy tg cân)
Xét tg BDP và tg CDP có
\(\widehat{CPD}=\widehat{BDP}\) (cmt)
CP=BD (gt)
DP chung
=> tg BDP = tg CDP (c.g.c) => BP=CD
Xét tứ giác BCDP có
BC//DP
BP=CD
=> tứ giác BCDP là hình thang cân \(\Rightarrow\widehat{BPD}=\widehat{CDP}\) (góc ở đáy hình thang cân)
Xét tg ABP và tg ACD có
BP=CD (cmt)
\(\widehat{BPD}=\widehat{CDP}\) (cmt)
AP=AD (cmt)
=> tg ABP = tg ACD (c.g.c) => AB=AC (đpcm)
#Tự vẽ hình nhé bạn#
a) Vì AB // CD nên AM // NC ( 1 )
Ta có : AM = 1 / 2 AB( vì M là trung điểm AB )
NC = 1 / 2 CD ( vì N là trung điểm CD )
Mà AB = CD ( vì ◇ABCD là hình bình hành )
\(\Rightarrow\)AM = NC ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)◇AMNC là hình bình hành
b) Xét \(\Delta\)DQC có :
\(\Rightarrow\)P là trung điểm DQ
\(\Rightarrow\)PD = PQ ( 3 )
Xét \(\Delta\)ABP có :
\(\Rightarrow\)Q là trung điểm BP
\(\Rightarrow\)BQ = PQ ( 4 )
Từ ( 3 ) và ( 4 ) \(\Rightarrow\)DP = PQ = QB
a: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
a) Ta có : AB // CD ( do ABCD là hình bình hành )
\(\Rightarrow\)AM // NC \(\left(1\right)\)
Lại có : M là trung điểm của AB \(\Rightarrow AM=\frac{1}{2}AB\left(2\right)\)
N là trung điểm của DC \(\Rightarrow CN=\frac{1}{2}CD\left(3\right)\)
mà AB = CD ( ABCD là hình bình hành ) \(\left(4\right)\)
Từ \(\left(2\right);\left(3\right);\left(4\right)\Rightarrow AM=CN\left(5\right)\)
Từ \(\left(1\right);\left(5\right)\Rightarrow\)tứ giác AMCN là hình bình hành
b) Ta có : ABCD là hình bình hành (gt)
\(\Rightarrow\)AC cắt BD tại trung điểm của mỗi đường
\(\Rightarrow\)O là trung điểm của BD và O là trung điểm của AC (*)
Ta có : AMCN là hình bình hành (cma)
\(\Rightarrow\)AC cắt MN tại trung điểm của mỗi đường
\(\Rightarrow\)O là trụng điểm của MN (**)
Từ (*) ; (**) \(\Rightarrow\)AC ; BD ; MN đồng quy
c) Ta có : AM = CN (cmt)
mà \(CN=\frac{1}{2}DC\)(cmt)
\(\Rightarrow AM=\frac{1}{2}DC\)
\(\Rightarrow\)AM là đường trung bình của \(\Delta ECD\)
Gọi G là trung điểm của AD
Xét tứ giác AMCG có
AG//CM
AG=CM
Do đó: AMCG là hình bình hành
SUy ra: AG=CM và AM=CG; AM//CG
Xét ΔBSC có
M là trung điểm của BC
MN//SC
Do đó: N là trung điểm của SB
Xét ΔDAN có
G là trung điểm của DA
GS//AN
DO đó: S là trung điểm của DN
=>DS=SN=NB
Xét ΔAND và ΔMNB có
góc AND=góc MNB
góc NAD=góc NMB
Do đó: ΔAND đồng dạng với ΔMNB
=>AN/MN=ND/NB=2
=>AN=2NM
=>AN=2/3AM=2/3GC
Xét ΔPGC có AN//GC
nên AN/GC=PA/PG=2/3
=>PA=2/3PG
=>PA=2AG=AD