K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2020

                                      A B C D M N E

a) Ta có : AB // CD ( do ABCD là hình bình hành )

\(\Rightarrow\)AM // NC \(\left(1\right)\)

Lại có : M là trung điểm của AB \(\Rightarrow AM=\frac{1}{2}AB\left(2\right)\)

              N là trung điểm của DC \(\Rightarrow CN=\frac{1}{2}CD\left(3\right)\)

mà AB = CD ( ABCD là hình bình hành ) \(\left(4\right)\)

Từ \(\left(2\right);\left(3\right);\left(4\right)\Rightarrow AM=CN\left(5\right)\)

Từ \(\left(1\right);\left(5\right)\Rightarrow\)tứ giác AMCN là hình bình hành

b) Ta có : ABCD là hình bình hành (gt)

\(\Rightarrow\)AC cắt BD tại trung điểm của mỗi đường

\(\Rightarrow\)O là trung điểm của BD và O là trung điểm của AC (*)

Ta có : AMCN là hình bình hành (cma)

\(\Rightarrow\)AC cắt MN tại trung điểm của mỗi đường 

\(\Rightarrow\)O là trụng điểm của MN (**)

Từ (*) ; (**) \(\Rightarrow\)AC ; BD ; MN đồng quy

c) Ta có : AM = CN (cmt)

mà \(CN=\frac{1}{2}DC\)(cmt)

\(\Rightarrow AM=\frac{1}{2}DC\)

\(\Rightarrow\)AM là đường trung bình của \(\Delta ECD\) 

        

a: Xét tứ giác AMCN có 

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

a: Xét tứ giác AMCN có

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

b: ABCDlà hình bình hành

nên AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm của AC

AMCN là hình bình hành

nên AC cắt MN tại trung điểm của mỗi đường

=>M đối xứng N qua O

15 tháng 10 2021

a: Xét tứ giác AMCN có 

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

23 tháng 10 2021

a: Xét tứ giác DEBF có

BE//DF

BE=DF

Do đó: DEBF là hình bình hành

31 tháng 10 2019

bạn lên mạng mà xem 

31 tháng 10 2019

#Tự vẽ hình nhé bạn#

a) Vì AB // CD nên AM // NC ( 1 )

Ta có : AM = 1 / 2 AB( vì M là trung điểm AB )

NC = 1 / 2 CD ( vì N là trung điểm CD )

Mà AB = CD ( vì ◇ABCD là hình bình hành )

\(\Rightarrow\)AM = NC ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)◇AMNC là hình bình hành

b) Xét \(\Delta\)DQC có :

  • N là trung điểm CD
  • PN // QC ( vì AN // MC )

\(\Rightarrow\)P là trung điểm DQ

\(\Rightarrow\)PD = PQ ( 3 )

Xét \(\Delta\)ABP có :

  • M là trung điểm AB
  • AP // MQ ( vì AN // MC )

\(\Rightarrow\)Q là trung điểm BP 

\(\Rightarrow\)BQ = PQ ( 4 )

Từ ( 3 ) và ( 4 ) \(\Rightarrow\)DP = PQ = QB