K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2016

1. Đặt x = √2.cosα và y = √2.sinα (với α trên [0,3π/2]) 
Ta có: P = 4√2(sinα + cosα)(1 - sinαcosα) - 6sinαcosα 
Đặt t = sinα + cosα = √2.sin(α + π/4) có |t| ≤ √2, nên sinαcosα = (t^2 - 1)/2 
suy ra P = -2√2.t^3 - 3t^2 + 6√2.t + 3. 
Đến đây bạn áp dụng P' = 0 rồi xét các gtrị cực trị. 

2. Đặt x = cosα và y = sinα (với α trên [0,3π/2]) 
Biến đổi P = (6sin2α + cos2α + 1) / (3 + sin 2α - cos 2α) 
Mặt khác lại có (cos2α)^2 + (sin 2α)^2 = 1. 
Ta áp dụng P' = 0 tiếp.

12 tháng 8 2021

Đừng dùng đạo hàm hay gì nhá

10 tháng 6 2023

A=x^3 + y^3 + 3xy(x+y)
  =x+3x^y+3xy^2+y^3
  =(x+y)^3=2^3=8
B=x^2+2xy+y^2+4
  =(x+y)^2+4=4+4=8

C=x^3+y^3+3xy(x+y)+7(x+y)

  =(x+y)^3+7(x+y)
  =2^3+7.2
  =8+14=22

23 tháng 7 2023

\(a,Q=\left(-2x^3y+7x^2y+3xy\right)+P=\left(-2x^3y+7x^2y+3xy\right)+\left(3x^2y-2xy^2-4xy+2\right)\\ =-2x^3y+7x^2y+3xy+3x^2y-3xy^2-4xy+2\\ =-2x^3y^2+10x^2y-3xy^2-xy+2\)

\(b,M=\left(3x^2y^2-5x^2y+8xy\right)-P\\ =\left(3x^2y^2-5x^2y+8xy\right)-\left(3x^2y-2xy^2-4xy+2\right)\\ =3x^2y^2-5x^2y+8xy-3x^2y^2+2xy^2+4xy-2\\ =-3x^2y+12xy-2\)

31 tháng 3 2018

Làm trên điện thoại sai sót thông cảm

Ta có \(x≥ 3y\) 

\(=> {x \over y}≥3\)  

Áp dụng cô-si cho hai số dương ta có

\({x^2+3y^2}≥{ 2 \sqrt{3}xy}\)   

Ta có \(M = {x^2+y^2 \over 3xy}\)    

\( = {3x^2+3y^2\over 9xy}\)   

\(= {x^2\over 9xy}+{{x^2+3y^2}\over 9xy}\) 

\( = {1 \over 9}.{x \over y}+{{x^2+3y^2}\over 9xy}\) 

\(≥ {1 \over 9}.{3}+{2 \sqrt{3} \over 9}\) 

\( = {3+2\sqrt{3} \over 9}\)  

Vậy Min M = (3+2✓3)/9

Dấu "=" xảy ra khi x=3y

31 tháng 3 2018

Thua olm rồi bạn ơi nhấn công thu ko đc :(