Tứ giác ABCD có hai đ/c vuông góc cắt nhau tại O (OC >OD) DEPQ là trung điểm của AB,BC,CD,DA
a, CM DEPQ là hình thoi
b, gọi OT là pg góc COD, CM QE vuông góc OT
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tứ giác ABCD có 2 đường chéo AC và BD bằng nhau và cắt nhau tại O sao cho OC > OD. Gọi F, E, P, Q theo thứ tự là trung điểm AB, BC, CD, AD. Gọi Ot là phân giác góc DOC. Chứng minh rằng: Ot vuông góc QE.
Các bạn giúp mình với.. Mình sắp nộp bài rồi. Giải cụ thể nhé. Camon.
Vì OE = AE và OF = DF => EF là đường TB của tam giác OAD => EF = AD/2 (1)
Vì ABCD là hình thang => góc OAB = OCD = 60* và ODC = OBA = 60*
==> tam giác OCD đều
∆ OCD đều có CF là đường trung tuyến nên đồng thời là đường cao => CF _l_ BD
=> tam giác BCF vuông tại F có trung tuyến FG => FG = BC / 2 (2)
Tương tự ==> EG = BC / 2 (3)
Vì 2 tam giác OAB và OCD đều => OA = OB và OC = OD
=> OA + OC = OB + OD <=> AC = BD => ABCD là hình thang cân => AD = BC (4)
Từ (1)(2)(3)(4) => EF = EG = FG => tam giác EFG đều
Vì OE = AE và OF = DF => EF là đường TB của tam giác OAD => EF = AD/2 (1)
Vì ABCD là hình thang => góc OAB = OCD = 60* và ODC = OBA = 60*
==> tam giác OCD đều
∆ OCD đều có CF là đường trung tuyến nên đồng thời là đường cao => CF _l_ BD
=> tam giác BCF vuông tại F có trung tuyến FG => FG = BC / 2 (2)
Tương tự ==> EG = BC / 2 (3)
Vì 2 tam giác OAB và OCD đều => OA = OB và OC = OD
=> OA + OC = OB + OD <=> AC = BD => ABCD là hình thang cân => AD = BC (4)
Từ (1)(2)(3)(4) => EF = EG = FG => tam giác EFG đều
a) Xét tứ giác ADME có:
. \(\widehat{BAC}\) = 900 ( \(\Delta\) ABC vuông tại A )
. \(\widehat{ADM}\) =900 ( \(MD\perp AB\) )
. \(\widehat{AEM}\) =900 ( \(ME\perp AC\) )
Vậy: ADME là hcn ( tứ giác có 3 góc vuông)
" đề bài câu b sai nha bạn" ^.^
1: Xét ΔOIC vuông tại I và ΔOID vuông tại I có
OI chung
\(\widehat{COI}=\widehat{DOI}\)
Do đó: ΔOIC=ΔOID
Suy ra: IC=ID
hay I là trung điểm của CD
2: Xét ΔOIA vuông tại A và ΔOIB vuông tại B có
OI chung
\(\widehat{AOI}=\widehat{BOI}\)
Do đó: ΔOIA=ΔOIB
Suy ra: IA=IB