K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2018

bn tự kẻ hình nha, phần a bn bk làm r nên mk ko làm nx

b) ta có: OD = OH ( dễ chứng minh ADHE là h.c.n => OD = OH do t/c 2 đường chéo)

=> tg ODH cân tại O => ^HDO = ^DHO(1)

Xét tg DBH vuông tại D

có: BP = PH(gt)

=> DP = PH (t/c đường trung tuyến của tg vuông)

=> tg DPH cân tại P => ^PDH = ^PHD (2)

Từ (1);(2) => ^HDO + ^PDH = ^DHO + ^PHD = ^BHA = 90 độ

=> ^HDO + ^PDH = 90 độ => ^PDE = 90 độ => \(DP\perp DE⋮D\)

cmtt, ta có: \(QE\perp DE⋮E\)

=> DP // QE

Xét tứ giác DEQP

có: DP// QE; ^PDE = 90 độ

=> DEQP là h.thang vuông

c) ( Nối Q với O; gọi giao điểm của QO và AB là K)

ta có: OA = OH; DH // AC ( ADHE là h.c.n)

Xét tg ACH

có: OA = OH; HQ = QC

=> QO là đường trung bình của tg ACH

=> QO // AC

mà DH // AC (cmt) => QO // DH

Lại có: \(DH\perp AB⋮D\left(gt\right)\)

\(\Rightarrow QO\perp AB⋮K\)

Xét tg ABQ

có: \(QO\perp AB⋮K\left(cmt\right);AH\perp BQ⋮H\left(gt\right)\)

QO cắt AH tại O

=> O là trực tâm của tg ABQ

d) ta có: \(S_{\Delta DPB}=\frac{BP.DP}{2};S_{\Delta DPH}=\frac{PH.DP}{2}\)

mà BP = PH \(\Rightarrow S_{\Delta DPB}=S_{\Delta DPH}\)(1)

cmtt, ta có: \(S_{\Delta EQH}=S_{\Delta EQC}\)(2)

ta có: tg ADE = tg HED ( cgv-cgv) ( do ADHE là h.c.n => AD = HE; AE = HD)

\(\Rightarrow S_{\Delta ADE}=S_{\Delta HED}\) (3)

Từ (1);(2);(3) => ...

đến chỗ này bn chỉ cần cộng diện tích các tg lại, dễ chứng minh được đpcm

15 tháng 3 2020

Mk giúp bạn trước câu a, b còn c,d thì mk đang suy nghĩ

a/

Ta có:

BA vuông góc với AC( A= 900 )

HD vuông góc với AC( D= 900 )

BA song song với HD( hai đường thẳng cùng vuông góc với dường thẳng thứ ba thì song song với nhau)

Xét tứ giác ADBH

AB song song với HD

⟹Tứ giác AHBD là hình thang ( tứ giác có hai cạnh đối song song)

Mà góc A= 900

⟹ Hình thang ABDH là hình thang vuông

b/

Xét tứ giác AEHD:

A=900(gt)

E=900 (gt)

D=900(gt)

Tứ giác AEDH là hình chữ nhật ( tứ giác có ba góc vuông)

a) Vì HD vuông góc với AB 

=> HDB = HDA = 90 độ

Mà BAC = 90 độ (gt)

=> BAC = BDH = 90 độ

Mà 2 góc này ở vị trí đồng vị

=> DH //AE

=> DHEA là hình thang 

Mà HE vuông góc với AC

=> HEA = 90 độ

=> HEA = BAC = 90 độ

=> DHEA là hình thang cân 

=> DE = AH ( hình thang  cân hai đường chéo bằng nhau)

=> dpcm