Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Xét tứ giác ABCD có góc B+góc D=180 độ
nên ABCD là tứ giác nội tiếp
=>góc BAC=góc BDC và góc DAC=góc DBC
mà góc CBD=góc CDB
nên góc BAC=góc DAC
hay AC là phân giác của góc BAD
b: Ta có: góc BCA=góc BAC
=>góc BCA=góc CAD
=>BC//AD
=>ABCD là hình thang
mà góc B=góc BCD
nên ABCD là hình thang cân
Câu hỏi của Nàng tiên cá - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo nhé!
Tứ giác có thể là hình vuông, chữ nhật phải không bạn?
P/s: Hỏi thôi chớ không trả lời đâu :D
Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.
M là trung điểm của BC và HN nên BNCH là hình bình hành
\(\Rightarrow NC//BH\)
Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O )
Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)
M là trung điểm BC nên OM \(\perp\)BC
Xét \(\Delta AHG\)và \(\Delta OGM\)có :
\(\widehat{HAG}=\widehat{GMO}\); \(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)
\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng
gọi E,F,T lần lượt là trung điểm của AB,CD,BD
Đường thẳng ME cắt NF tại S
Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )
Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)
Tương tự , \(NF\perp CD;\)\(TQ//CD\)
\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )
\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)
Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )
Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)
Đây là hình của bài
nhưng mik ko chắc đúng
vì mik mới học lớp 7
thông cảm nha
Lấy M là trung điểm của cạnh AB.
\(\Delta\)BAD có: I là trung điểm AD; M là trung điểm AB => IM là đường trung bình của \(\Delta\)BAD
=> IM // BD và IM = BD/2 (1)
Tương tự ta có: MK // AC và MK = AC/2 (2)
Lại có: AC=BD (3)
Từ (1); (2) và (3) => IM = KM => \(\Delta\)MIK cân tại M => ^MIK = ^MKI
Mà ^MIK = ^BEK (Do IM // BD) hay ^MIK = ^OEF . Tương tự ^MKI = ^OFE
Nên ^OEF = ^OFE => \(\Delta\)OEF là tam giác cân đỉnh O (đpcm).
Cho tứ giác ABCD có 2 đường chéo AC và BD bằng nhau và cắt nhau tại O sao cho OC > OD. Gọi F, E, P, Q theo thứ tự là trung điểm AB, BC, CD, AD. Gọi Ot là phân giác góc DOC. Chứng minh rằng: Ot vuông góc QE.
Các bạn giúp mình với.. Mình sắp nộp bài rồi. Giải cụ thể nhé. Camon.
Vì OE = AE và OF = DF => EF là đường TB của tam giác OAD => EF = AD/2 (1)
Vì ABCD là hình thang => góc OAB = OCD = 60* và ODC = OBA = 60*
==> tam giác OCD đều
∆ OCD đều có CF là đường trung tuyến nên đồng thời là đường cao => CF _l_ BD
=> tam giác BCF vuông tại F có trung tuyến FG => FG = BC / 2 (2)
Tương tự ==> EG = BC / 2 (3)
Vì 2 tam giác OAB và OCD đều => OA = OB và OC = OD
=> OA + OC = OB + OD <=> AC = BD => ABCD là hình thang cân => AD = BC (4)
Từ (1)(2)(3)(4) => EF = EG = FG => tam giác EFG đều
Vì OE = AE và OF = DF => EF là đường TB của tam giác OAD => EF = AD/2 (1)
Vì ABCD là hình thang => góc OAB = OCD = 60* và ODC = OBA = 60*
==> tam giác OCD đều
∆ OCD đều có CF là đường trung tuyến nên đồng thời là đường cao => CF _l_ BD
=> tam giác BCF vuông tại F có trung tuyến FG => FG = BC / 2 (2)
Tương tự ==> EG = BC / 2 (3)
Vì 2 tam giác OAB và OCD đều => OA = OB và OC = OD
=> OA + OC = OB + OD <=> AC = BD => ABCD là hình thang cân => AD = BC (4)
Từ (1)(2)(3)(4) => EF = EG = FG => tam giác EFG đều