Cho hai số dương a,b thỏa mãn ab=1
Tìm giá trị MinP = \(\frac{1}{a}+\frac{1}{b}+\frac{2}{a+b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{1}{a}+\frac{1}{b}+\frac{2}{a+b}=\frac{a+b}{ab}+\frac{2}{a+b}\)
\(=a+b+\frac{2}{a+b}=a+b+\frac{4}{a+b}-\frac{2}{a+b}\)
\(\ge2\sqrt{\left(a+b\right).\frac{4}{a+b}}-\frac{2}{2\sqrt{ab}}=2\sqrt{4}-1=3\)(AM-GM)
Nên GTNN của B là 3 khi a=b=1
Từ bất đẳng thức luôn đúng \(\left(a-b\right)^2\ge0\)\(\Leftrightarrow a^2-2ab+b^2\ge0\)\(\Leftrightarrow a^2+b^2\ge2ab\)\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)(*)
Vì a, b là các số thực dương nên nhân cả 2 vế của (*) cho \(\frac{1}{ab\left(a+b\right)}\), ta có:
\(\frac{\left(a+b\right)^2}{ab\left(a+b\right)}\ge\frac{4}{ab\left(a+b\right)}\)\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)\(\Leftrightarrow P\ge\frac{4}{a+b}\)
Lại có \(a+b\le2\sqrt{2}\)\(\Leftrightarrow\frac{4}{a+b}\ge\frac{4}{2\sqrt{2}}=\sqrt{2}\)
Từ đó ta có \(P\ge\sqrt{2}\)
Dấu "=" xảy ra khi \(a=b=\sqrt{2}\)
\(Q=\frac{1}{a^2+b^2}+2012+\frac{1}{ab}+4ab.\)
Ta có \(M=\frac{1}{a^2+b^2}+\frac{1}{ab}+4ab=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}+8ab-4ab\)
Áp dụng bđt Cauchy ta có
\(M\ge\frac{4}{\left(a+b\right)^2}+2\sqrt{\frac{1}{2ab}.8ab}-\left(a+b\right)^2=7\)
=> \(Q\ge2012+7=2019\)
Dấu "=" xảy ra khi a=b=\(\frac{1}{2}\)
Vậy......
\(Q=\frac{1}{a^2+b^2}+\frac{2012ab+1}{ab}+4ab=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\left(4ab+\frac{1}{4ab}\right)+\frac{1}{4ab}+2012\)
Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y};\left(x+y\right)^2\ge4xy\),ta có:
\(\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge\frac{4}{1}=4\)
\(\left(4ab+\frac{1}{4ab}\right)^2\ge4.4ab\cdot\frac{1}{4ab}=4\Rightarrow4ab+\frac{1}{4ab}\ge2\)
\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{1}{ab}\ge\frac{4}{\left(a+b\right)^2}\ge\frac{4}{1}=4\Rightarrow\frac{1}{4ab}\ge1\)
\(\Rightarrow Q\ge4+2+1+2012=2019\)
Dấu "=" xảy ra khi a=b=1/2
Ta có a2 + 1 \(\ge\)2a
Khi đó \(\frac{1}{a^2+ab-a+5}=\frac{1}{a^2+1+ab-a+4}\le\frac{1}{2a+ab-a+4}=\frac{1}{ab+a+4}\)
Tương tự ta được \(\frac{1}{b^2+bc-b+5}\le\frac{1}{bc+b+4};\frac{1}{c^2+ac-c+5}\le\frac{1}{ac+c+4}\)
Cộng vế với vế => A \(\le\frac{1}{ab+a+4}+\frac{1}{bc+b+4}+\frac{1}{ca+c+4}\)
=> 4A \(\le\frac{4}{ab+a+1+3}+\frac{4}{bc+b+1+3}+\frac{4}{ca+c+1+3}\)
\(\le\frac{1}{ab+a+1}+\frac{1}{3}+\frac{1}{bc+b+1}+\frac{1}{3}+\frac{1}{ac+a+1}+\frac{1}{3}\)
\(=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ac+a+1}+1\)
\(=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{a^2bc+abc+ab}+1\)
\(=\frac{1}{ab+a+1}+\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+1=\frac{ab+a+1}{ab+a+1}+1=1+1=2\)
=> \(A\le\frac{1}{2}\)(Dấu "=" xảy ra <=> a = b = c = 1)
cho mik hỏi tí là làm sao ra được \(\frac{4}{ab+a+1+3}\le\frac{1}{ab+a+1}+\frac{1}{3}\) vậy ạ?
\(A=\frac{ab}{a+c+b+c}+\frac{bc}{a+b+a+c}+\frac{ca}{a+b+b+c}\)
\(\le\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ca}{a+b}+\frac{ca}{b+c}\right)\)
\(=\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\)
Nên max A là \(\frac{1}{4}\) khi \(a=b=c=\frac{1}{3}\)