tính tổng
A= 1 + 8 + 82 +...+ 810
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(2A=2^1+2^2+...+2^{2022}\)
\(\Leftrightarrow A=2^{2022}-1\)
a: 5A=5+5^2+...+5^2023
=>4A=5^2023-1
=>A=(5^2023-1)/4
b: 6B=6^2+6^3+...+6^41
=>5B=6^41-6
=>B=(6^41-6)/5
c: 16C=4^4+4^6+...+4^16
=>15C=4^16-4^2
=>C=(4^16-4^2)/15
d: 9D=3^3+3^5+...+3^27
=>8D=3^27-3
=>D=(3^27-3)/8
\(\Leftrightarrow9A=3^3+3^5+...+3^{21}\\ \Leftrightarrow9A-A=3^3+3^5+...+3^{21}-3-3^3-3^5-...-3^{19}\\ \Leftrightarrow8A=3^{21}-3\Leftrightarrow A=\dfrac{3^{21}-3}{8}\)
\(A=1+2+4+8+...+2^{100}\)
\(=2^0+2^1+2^2+...+2^{100}\)
\(=2^0+\left(2^1+2^2+...+2^{100}\right)\)
\(=1+\left[\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\right]\)
\(=1+\left[2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\right]\)
\(=1+\left[2\cdot3+2^3\cdot3+...+2^{99}\cdot3\right]\)
\(=1+3\left(2+2^3+...+2^{99}\right)\)
\(3\left(2+2^3+...+2^{99}\right)⋮3\)
=>\(A=1+3\left(2+2^3+...+2^{99}\right)\) chia 3 dư 1
`#3107.101107`
1.
`a,`
\(A=1+3+3^2+3^3+...+3^{2012}\)
`3A = 3 + 3^2 + 3^3 + ... + 3^2013`
`3A - A = (3 + 3^2 + 3^3 + ... + 3^2013) - (1 + 3 + 3^2 + 3^3 + ... + 3^2012)`
`2A = 3 + 3^2 + 3^3 + ... + 3^2013 - 1 - 3 - 3^2 - 3^3 - ... - 3^2012`
`2A = 3^2013 - 1`
`=> A = (3^2013 - 1)/2`
Vậy, `A = (3^2013 - 1)/2`
`b,`
\(B=1+10+10^2+10^3+...+10^{2023}\)
`10B = 10 + 10^2 + 10^3 + ... + 10^2024`
`10 B - B = (10 + 10^2 + 10^3 + ... + 10^2024) - (1 - 10 + 10^2 + 10^3 + ... + 10^2023)`
`9B = 10 + 10^2 + 10^3 + ... + 10^2024 - 1 - 10^2 - 10^3 - ... - 10^2023`
`9B = 10^2024 - 1`
`=> B = (10^2024 - 1)/9`
Vậy, `B = (10^2024 - 1)/9.`
`a)A=1+3+3^2+3^3+...+3^2012`
`=>3A=3+3^2+3^3+...+3^2013`
`=>3A-A=2A=3^2013-1`
`=>A=(3^2013-1)/2`
`b)B=1+10+10^2+...+10^2024`
`=>10B=10+10^2+10^3+....+10^2025`
`=>10B-B=9B=10^2025-10`
`=>B=(10^2025-10)/9`
a)
`1/1-1/2`
`=2/2-1/2`
`=1/2`
b)
`1/(1*2)+1/(2*3)`
`=1/1-1/2+1/2-1/3`
`=1/1-1/3`
`=3/3-1/3`
`=2/3`
c)
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =\dfrac{1}{1}-\dfrac{1}{100}\\ =\dfrac{99}{100}\)
d)
\(\dfrac{3}{1\cdot2}+\dfrac{3}{2\cdot3}+...+\dfrac{3}{99\cdot100}\) đề phải như thế này chứ nhỉ?
\(=\dfrac{1\cdot3}{1\cdot2}+\dfrac{1\cdot3}{2\cdot3}+...+\dfrac{1\cdot3}{99\cdot100}\\ =3\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{100}\right)\\ =3\cdot\dfrac{99}{100}\\ =\dfrac{297}{100}\)
\(A=1+8+8^2+...+8^{10}\)
\(\Rightarrow8A=8+8^2+8^3+...+8^{11}\)
\(\Rightarrow8A-A=\left(8+8^2+8^3+...+8^{11}\right)-\left(1+8+8^2+...+8^{10}\right)\)
\(\Rightarrow7A=8^{11}-1\)
\(\Rightarrow A=\frac{8^{11}-1}{7}\)