K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
21 tháng 9 2018

Lời giải:

a) Gọi $(x_0,y_0)$ là điểm cố định.

Khi đó \((m-1)x_0+(m-2)y_0=3, \forall m\)

\(\Leftrightarrow m(x_0+y_0)-(x_0+2y_0+3)=0\) với mọi $m$

\(\Rightarrow \left\{\begin{matrix} x_0+y_0=0\\ x_0+2y_0+3=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x_0=3\\ y_0=-3\end{matrix}\right.\)

Vậy điểm cố định mà họ đường thẳng d đi qua là $(3;-3)$

b)

Công thức nâng cao. Cho điểm $A(x_0;y_0)$ và đường thẳng d:\(mx+ny+c=0\)

Khi đó khoảng cách giữa $A$ và $d$ là:

\(d=\frac{|mx_0+ny_0+c|}{\sqrt{m^2+n^2}}\)

Áp dụng vào bài toán:

\(d(A,d)=\frac{|(m-1).1+(m-2)(-2)-3|}{\sqrt{(m-1)^2+(m-2)^2}}=\frac{|-m|}{\sqrt{2m^2-6m+5}}\)

\(=\sqrt{\frac{m^2}{2m^2-6m+5}}=\frac{1}{\sqrt{2-\frac{6}{m}+\frac{5}{m^2}}}\)

\(=\frac{1}{\sqrt{(\frac{\sqrt{5}}{m}-\frac{3}{\sqrt{5}})^2+\frac{1}{5}}}\leq \frac{1}{\sqrt{0+\frac{1}{5}}}=\sqrt{5}\)

Vậy \(d_{\max}=\sqrt{5}\Leftrightarrow m=\frac{5}{3}\)

23 tháng 9 2021

\(a,d//d_1\Leftrightarrow\left\{{}\begin{matrix}m+2=-2\\m\ne3\end{matrix}\right.\Leftrightarrow m=-4\\ b,d\perp d_2\Leftrightarrow\dfrac{1}{3}\left(m+2\right)=-1\Leftrightarrow m+2=-3\Leftrightarrow m=-5\\ c,d.qua.N\left(1;3\right)\Leftrightarrow x=1;y=3\Leftrightarrow3=m+2+m\\ \Leftrightarrow2m=1\Leftrightarrow m=\dfrac{1}{2}\)

23 tháng 9 2021

k có câu d ạ

 

24 tháng 12 2021

a: Thay x=1 và y=2 vào (d), ta được:

2m+1=2

hay m=1/2

24 tháng 12 2021

giúp e câu b,c nữa ạ

24 tháng 12 2021

b: Để hai đường song song thì m+1=2

hay m=1

17 tháng 12 2021

1.

\(a,\Leftrightarrow2m-1+m-2=6\Leftrightarrow3m=9\Leftrightarrow m=3\\ b,2x+3y-5=0\Leftrightarrow3y=-2x+5\Leftrightarrow y=-\dfrac{2}{3}x+\dfrac{5}{3}\)

Để \(\left(d\right)\text{//}y=-\dfrac{2}{3}x+\dfrac{5}{3}\Leftrightarrow\left\{{}\begin{matrix}2m-1=-\dfrac{2}{3}\\m-2\ne\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{6}\\m\ne\dfrac{11}{3}\end{matrix}\right.\Leftrightarrow m=\dfrac{1}{6}\)

\(c,x+2y+1=0\Leftrightarrow2y=-x-1\Leftrightarrow y=-\dfrac{1}{2}x-\dfrac{1}{2}\\ \left(d\right)\bot y=-\dfrac{1}{2}x-\dfrac{1}{2}\Leftrightarrow\left(-\dfrac{1}{2}\right)\left(2m-1\right)=-1\\ \Leftrightarrow\dfrac{1}{2}\left(2m-1\right)=1\Leftrightarrow m-\dfrac{1}{2}=1\Leftrightarrow m=\dfrac{3}{2}\)

2.

Gọi điểm cố định đó là \(A\left(x_0;y_0\right)\)

\(\Leftrightarrow y_0=\left(2m-1\right)x_0+m-2\\ \Leftrightarrow2mx_0+m-x_0-2-y_0=0\\ \Leftrightarrow m\left(2x_0+1\right)-\left(x_0+y_0+2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x_0=-1\\x_0+y_0+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-\dfrac{1}{2}\\y_0=-\dfrac{3}{2}\end{matrix}\right.\)

18 tháng 12 2021

mình cảm ơn bạn nhiều nha 

a) Thay x=-1 và y=4 vào (d), ta được:

\(3m\cdot\left(-1\right)+m-2=4\)

\(\Leftrightarrow-2m=6\)

hay m=-3

b) Để (d)//(Δ) thì \(\left\{{}\begin{matrix}3m=6\\m-2\ne-1\end{matrix}\right.\Leftrightarrow m=2\)

5 tháng 8 2021

cho mình xin câu C với bạn !! :)

 

 

NV
15 tháng 12 2020

a.

Giả sử điểm cố định mà (d) đi qua có tọa độ \(M\left(x_0;y_0\right)\)

Với mọi m, ta có:

\(y_0=\left(m+2\right)x_0+m\)

\(\Leftrightarrow m\left(x_0+1\right)+2x_0-y_0=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\2x_0-y_0=0\end{matrix}\right.\) \(\Rightarrow M\left(-1;-2\right)\)

b. Để (d) cắt 2 trục tạo thành tam giác thì \(m\ne\left\{0;-2\right\}\)

Khi đó ta có: \(\left\{{}\begin{matrix}A\left(-\dfrac{m}{m+2};0\right)\\B\left(0;m\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}OA=\left|\dfrac{m}{m+2}\right|\\OB=\left|m\right|\end{matrix}\right.\)

\(S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{m^2}{\left|m+2\right|}=1\)

\(\Leftrightarrow\left[{}\begin{matrix}m^2=m+2\\m^2=-m-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=2\end{matrix}\right.\)