Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,d//d_1\Leftrightarrow\left\{{}\begin{matrix}m+2=-2\\m\ne3\end{matrix}\right.\Leftrightarrow m=-4\\ b,d\perp d_2\Leftrightarrow\dfrac{1}{3}\left(m+2\right)=-1\Leftrightarrow m+2=-3\Leftrightarrow m=-5\\ c,d.qua.N\left(1;3\right)\Leftrightarrow x=1;y=3\Leftrightarrow3=m+2+m\\ \Leftrightarrow2m=1\Leftrightarrow m=\dfrac{1}{2}\)
a: Thay x=1 và y=2 vào (d), ta được:
2m+1=2
hay m=1/2
a) (d) đi qua điểm (1;2)
<=> 2 = k + 1 + k
<=> 1 = 2k
<=> k = 0,5
Vậy k = 0,5 thì (d) đi qua (1;2)
b) Để (d) // đgth y = 2x + 3
\(\Leftrightarrow\hept{\begin{cases}k+1=2\\k\ne3\end{cases}\Leftrightarrow\hept{\begin{cases}k=1\\k\ne3\end{cases}\Rightarrow}k=1}\)
Vậy k =1 thì (d) // đgth y = 2x +3
c) Gọi điểm cố định là (d) đi qua là (x0;y0)
Ta có y0 = ( k +1) x0 + k
<=> y0 = kx0 + x0+k
<=> y0 - x0 - k ( x0 + 1) = 0 \(\forall\)k
Để pt nghiệm đúng với mọi k <=> \(\hept{\begin{cases}x_0+1=0\\y_0-x_0=0\end{cases}\Leftrightarrow\hept{\begin{cases}x_0=-1\\y_0=-1\end{cases}}}\)
Điểm cố định (d) luôn đi qua là ( -1;-1)
ĐKXĐ: \(m\ne1\)
Gọi \(\left(d'\right):y+2x-3=0\)
\(\Leftrightarrow\left(d'\right):y=-2x+3\)
Để \(\left(d\right)\perp\left(d'\right)\) thì: \(\left(m-1\right).\left(-2\right)=-1\)
\(\Leftrightarrow-2m+2=-1\)
\(\Leftrightarrow-2m=-3\)
\(\Leftrightarrow m=\dfrac{3}{2}\) (nhận)
\(\Rightarrow\left(d\right):y=\dfrac{1}{2}x+n+2\)
Thay tọa độ điểm A(2; 4) vào (d) ta được:
\(4=\dfrac{1}{2}.2+n+2\)
\(\Leftrightarrow1+n+2=4\)
\(\Leftrightarrow n=4-1-2\)
\(\Leftrightarrow n=1\)
Vậy \(m=\dfrac{3}{2};n=1\)
Ta biết đổi lại thành \(y\left(2m-2\right)=\left(m+3\right)-\left(m-1\right)x\)
a/ Để đths song song với (d) : \(y=\frac{3x-1}{2}=\frac{3}{2}x-\frac{1}{2}\)thì \(\begin{cases}2m-2\ne0\\m+3\ne-\frac{1}{2}\\-\left(m-1\right)=\frac{3}{2}\end{cases}\) \(\Leftrightarrow m=-\frac{1}{2}\) (thỏa mãn)
Còn lại tương tự.
b/ Gọi điểm cố định là \(N\left(x_0;y_0\right)\)
Vì đths đi qua N nên \(\left(m-1\right)x_0+\left(2m-2\right)y_0=m+3\Leftrightarrow m\left(x_0+2y_0-1\right)-\left(x_0+2y_0+3\right)=0\)
Để N là điểm cố định thỏa mãn thì
\(\begin{cases}x_0+2y_0-1=0\\x_0+2y_0+3=0\end{cases}\) . Hệ này vô nghiệm.
Vậy không có điểm cố định.
1.
\(a,\Leftrightarrow2m-1+m-2=6\Leftrightarrow3m=9\Leftrightarrow m=3\\ b,2x+3y-5=0\Leftrightarrow3y=-2x+5\Leftrightarrow y=-\dfrac{2}{3}x+\dfrac{5}{3}\)
Để \(\left(d\right)\text{//}y=-\dfrac{2}{3}x+\dfrac{5}{3}\Leftrightarrow\left\{{}\begin{matrix}2m-1=-\dfrac{2}{3}\\m-2\ne\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{6}\\m\ne\dfrac{11}{3}\end{matrix}\right.\Leftrightarrow m=\dfrac{1}{6}\)
\(c,x+2y+1=0\Leftrightarrow2y=-x-1\Leftrightarrow y=-\dfrac{1}{2}x-\dfrac{1}{2}\\ \left(d\right)\bot y=-\dfrac{1}{2}x-\dfrac{1}{2}\Leftrightarrow\left(-\dfrac{1}{2}\right)\left(2m-1\right)=-1\\ \Leftrightarrow\dfrac{1}{2}\left(2m-1\right)=1\Leftrightarrow m-\dfrac{1}{2}=1\Leftrightarrow m=\dfrac{3}{2}\)
2.
Gọi điểm cố định đó là \(A\left(x_0;y_0\right)\)
\(\Leftrightarrow y_0=\left(2m-1\right)x_0+m-2\\ \Leftrightarrow2mx_0+m-x_0-2-y_0=0\\ \Leftrightarrow m\left(2x_0+1\right)-\left(x_0+y_0+2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x_0=-1\\x_0+y_0+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-\dfrac{1}{2}\\y_0=-\dfrac{3}{2}\end{matrix}\right.\)
mình cảm ơn bạn nhiều nha