K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2018

Đặt phân số trên là A

Mẫu thức =\(3+|5x+1|+|2y-1|\ge3\)

Amax <=> Mẫu thức nhỏ nhất <=> 5x+1=0 và 2y-1=0 <=> x=-1/5 và y=1/2

=> Amax=12/3=4 <=> x=-1/5 và y =1/2

20 tháng 9 2018

Ta có : \(\left\{{}\begin{matrix}\left|5x+1\right|\ge0\forall x\\\left|2y-1\right|\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow3+\left|5x+1\right|+\left|2y-1\right|\ge3\forall x;y\)

\(\Rightarrow\dfrac{12}{3+\left|5x+1\right|+\left|2y-1\right|}\le\dfrac{12}{3}=4\forall x;y\)

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left|5x+1\right|=0\\\left|2y-1\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x+1=0\\2y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x=-1\\2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{5}\\y=\dfrac{1}{2}\end{matrix}\right.\)

Vậy Max của b/t trên là : \(4\Leftrightarrow x=-\dfrac{1}{5};y=\dfrac{1}{2}\)

14 tháng 2 2022

\(\)\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\Rightarrow2\ge\dfrac{4}{x+y}\Leftrightarrow x+y\ge2\)(chắc bài cho x,y>0?

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\Rightarrow\sqrt{xy}\ge1\Leftrightarrow xy\ge1\)

\(D=\dfrac{1}{x+2y}+\dfrac{1}{2x+y}=\dfrac{1}{x+y+y}+\dfrac{1}{x+x+y}\le\dfrac{1}{y+2}+\dfrac{1}{x+2}\)

\(cm:\dfrac{1}{x+2}+\dfrac{1}{y+2}\le\dfrac{2}{3}\Leftrightarrow\dfrac{x+y+4}{\left(x+2\right)\left(y+2\right)}\le\dfrac{2}{3}\)

\(\Leftrightarrow2\left(x+2\right)\left(y+2\right)\ge3\left(x+y+4\right)\Leftrightarrow4x+4y+8+2xy\ge3x+3y+12\Leftrightarrow x+y+2xy\ge4\left(1\right)\)

\(x+y\ge2;xy\ge1\Rightarrow\left(1\right)đúng\Rightarrow D\le\dfrac{2}{3}\Rightarrow dấu"="xayra\Leftrightarrow x=y=1\)

24 tháng 11 2021

1) Xét rằng x > 7 <=> A < 0

Lại xét x < 7 thì mẫu là một số nguyên dương. P/s A có tử và mẫu đều là số dương, mà tử lại bất biến

A(max) <=> mẫu 7 - x nhỏ nhất <=> 7 - x = 1 => x = 7 - 1 = 6 <=> A = 1

Từ những điều trên thì A sẽ có GTLN khi và chỉ khi x = 6

21 tháng 10 2023

loading...  loading...  loading...  

15 tháng 1 2021

Bài 1:

A = 3(x + 1)2 + 5 

Ta có: (x + 1)2 \(\ge\) 0 Với mọi x

\(\Rightarrow\) 3(x + 1)2 \(\ge\) 0 với mọi x

\(\Rightarrow\) 3(x + 1)+ 5 \(\ge\) 5 với mọi x

Hay A \(\ge\) 5

Dấu "=" xảy ra khi và chỉ khi x + 1 = 5 hay x = -1

Vậy...

B = 2|x + y| + 3x2 - 10

Ta có: 2|x + y| \(\ge\) 0 với mọi x, y

3x\(\ge\) 0 với mọi x

\(\Rightarrow\) 2|x + y| + 3x2 - 10 \(\ge\) -10 với mọi x,y

Dấu "=" xảy ra khi và chỉ khi x + y = 0; x = 0

\(\Rightarrow\) x = y = 0

Vậy ...

C = 12(x - y)2 + x2 - 6

Ta có: 12(x - y)2 \(\ge\) 0 với mọi x; y

x2 \(\ge\) 0 với mọi x

\(\Rightarrow\) 12(x - y)2 + x2 - 6 \(\ge\) -6 với mọi x, y

Dấu "=" xảy ra khi và chỉ khi x = y = 0

Phần D ko rõ đầu bài nha vì D luôn có một giá trị duy nhất

Bài 2:

Phần A ko rõ đầu bài!

B = 3 - (x + 1)2 - 3(x + 2y)2

Ta có: -(x + 1)2 \(\le\) 0 với mọi x

-3(x + 2y)\(\le\) 0 với mọi x, y

\(\Rightarrow\) 3 - (x + 1)2 - 3(x + 2y)\(\le\) 3 với mọi x, y

Dấu "=" xảy ra khi và chỉ khi x = 2y; x + 1 = 0

\(\Rightarrow\) x = -1; y = \(\dfrac{-1}{2}\)

Vậy ...

C = -12 - 3|x + 1| - 2(y - 1)2

Ta có: -3|x + 1| \(\le\) 0 với mọi x

-2(y - 1)2 \(\le\) 0 với mọi y

\(\Rightarrow\)  -12 - 3|x + 1| - 2(y - 1)\(\le\) -12 với mọi x, y

Dấu "=" xảy ra khi và chỉ khi x + 1 = 0; y - 1 = 0

\(\Rightarrow\) x = -1; y = 1

Vậy ...

Phần D đề ko rõ là \(\dfrac{5}{2x^2}-3\) hay \(\dfrac{5}{2}\)x2 - 3 nữa

F = \(\dfrac{-5}{3}\) - 2x2

Ta có: -2x2 \(\le\) 0 với mọi x

\(\Rightarrow\) \(\dfrac{-5}{3}-2x^2\) \(\le\) \(\dfrac{-5}{3}\) với mọi x

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy ...

Chúc bn học tốt!

26 tháng 8 2023

\(C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\)

\(\Rightarrow C=-2\left|\dfrac{1}{3}x+4\right|+\dfrac{5}{3}\)

mà \(-2\left|\dfrac{1}{3}x+4\right|\le0,\forall x\)

\(\Rightarrow C=-2\left|\dfrac{1}{3}x+4\right|+\dfrac{5}{3}\le\dfrac{5}{3}\)

\(\Rightarrow GTLN\left(C\right)=\dfrac{5}{3}\left(tạix=-12\right)\)