a=1+5+52+54+56+...+5102
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=5^2+5^4+5^6+...+5^{100}+5^{102}\\ =5^2.\left(1+5^2+5^4+...+5^{98}+5^{100}\right)\\ =25.\left(1+5^2+5^4+...+5^{98}+5^{100}\right)⋮25\)
A = 550 - 548 + 546- 544+....+56 - 54 + 52 - 1
A \(\times\) 22 = 552 - 550 + 548 - 546+ 544-.....-56 +54 - 52
A \(\times\) 4 + A = 552 - 1
5A = 552 - 1
A = ( 552 - 1) : 5
A = 551 - \(\dfrac{1}{5}\)
S = 5 + 5² + 5³ + 5⁴ + ... + 5²⁰¹²
= (5 + 5² + 5³ + 5⁴) + (5⁵ + 5⁶ + 5⁷ + 5⁸) + ... + (5²⁰⁰⁹ + 5²⁰¹⁰ + 5²⁰¹¹ + 5²⁰¹²)
= 780 + 5⁴.(5 + 5² + 5³ + 5⁴) + ... + 5²⁰⁰⁸.(5 + 5² + 5³ + 5⁴)
= 780 + 5⁴.780 + ... + 5²⁰⁰⁸.780
= 65.12 + 5⁴.65.12 + ... + 5²⁰⁰⁸.65.12
= 65.12(1 + 5⁴ + ... + 5²⁰⁰⁸) ⋮ 65
Vậy S ⋮ 65
Đề bài thiếu yêu cầu cụ thể em nhé. em cập nhật lại câu hỏi để được sự hỗ trợ tốt nhất cho tài khoản olm vip
chịu cho 1 like
Sửa đề: \(a=1+5^2+5^4+...+5^{102}\)
=>\(25a=5^2+5^4+...+5^{104}\)
=>\(24a=5^{104}-1\)
hay \(a=\dfrac{5^{104}-1}{24}\)