K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2018
Phân tích đa thức thành nhân tử nha

1: Sửa đề: 3x-5

\(=\dfrac{-x^2\left(3x-5\right)-3\left(3x-5\right)}{3x-5}=-x^2-3\)

2: \(=\dfrac{5x^4-5x^3+14x^3-14x^2+12x^2-12x+8x-8}{x-1}\)

=5x^2+14x^2+12x+8

3: \(=\dfrac{5x^3+10x^2+4x^2+8x+4x+8}{x+2}=5x^2+4x+4\)

4: \(=\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}=x^2+1-2x\)

5: \(=\dfrac{x^2\left(5-3x\right)+3\left(5-3x\right)}{5-3x}=x^2+3\)

AH
Akai Haruma
Giáo viên
28 tháng 10 2018

Lời giải:

Vì tổng hệ số của biểu thức vế trái và vế phải bằng nhau nên ta đoán luôn được pt có 1 nghiệm bằng $1$

\(26x^3=6x^2+12x+8\)

\(\Leftrightarrow 26x^3-6x^2-12x-8=0\)

\(\Leftrightarrow (26x^3-26x^2)+(20x^2-20x)+(8x-8)=0\)

\(\Leftrightarrow 26x^2(x-1)+20x(x-1)+8(x-1)=0\)

\(\Leftrightarrow (x-1)(26x^2+20x+8)=0\)

\(26x^2+20x+8=(5x+2)^2+x^2+4>0, \forall x\)

Do đó: \(x-1=0\Rightarrow x=1\)

8 tháng 12 2017

mk mới lớp 6 thôi ,lớp 9 mình .......mình.........chịu (I VERY SORRY YOU!!)

26 tháng 7 2017

sorry, i cant do it

6 tháng 10 2015

\(\text{ĐK: }x^3-6x^2+12x-8=\left(x-2\right)^3\ne0\Leftrightarrow x\ne2\)

\(pt\Leftrightarrow\frac{\left(x-2\right)^3\left(x^2-3x-3\right)}{\left(x-2\right)^3}=0\Leftrightarrow x^2-3x-3=0\)

Vậy pt có 2 nghiệm \(a;b\) thỏa \(a+b=3;\text{ }a.b=-3\text{ (Vi-et)}\)

\(A=\frac{1}{a^{10}}+\frac{1}{b^{10}}=\frac{a^{10}+b^{10}}{\left(ab\right)^{10}}=\frac{\left(a^5+b^5\right)^2-2a^5b^5}{\left(-3\right)^{10}}\)

Ta có: \(a^5+b^5=\left(a+b\right)\left(a^4-a^3b+a^2b^2-ab^3+b^4\right)\)

\(=\left(a+b\right)\left[\left(a^4+b^4+2a^2b^2\right)-a^2b^2-ab\left(a^2+b^2\right)\right]\)

\(=\left(a+b\right)\left[\left(a^2+b^2\right)^2-ab\left(a^2+b^2\right)-a^2b^2\right]\)

\(=\left(a+b\right)\left\{\left[\left(a+b\right)^2-2ab\right]^2-ab\left[\left(a+b\right)^2-2ab\right]-\left(ab\right)^2\right\}\)

\(=3\left[\left(3^2-2.\left(-3\right)\right)^2-\left(-3\right)\left(3^2-2.\left(-3\right)\right)-\left(-3\right)^2\right]\)

\(=783\)

\(A=\frac{783^2-2\left(-3\right)^5}{3^{10}}=\frac{2525}{243}\)

 

 

11 tháng 4 2018

Khi phá ngoặc của của đa thức f(x) ta sẽ được đa thức \(f\left(x\right)=a_1x^n+a_2x^{n-1}+a_3x^{n-2}+...+a_{n-1}x+a_n\)(với n là bậc của đa thức)

Ta có:\(f\left(1\right)=a_1+a_2+a_3+...+a_{n-1}+a_n\)

Mà \(f\left(1\right)=\left(3-12+8\right)^{111}\cdot\left(4+3+2+1-12+1\right)^{2222}\)\(=-1\)

Suy ra:\(a_1+a_2+a_3+...+a_{n-1}+a_n=-1\)

Vậy tổng các hệ số của đa thức sau khi phá ngoặc là -1

26 tháng 10 2021

6) ĐKXĐ: \(x\le-6\)

\(\sqrt{\left(x+6\right)^2}=-x-6\Leftrightarrow\left|x+6\right|=-x-6\)

\(\Leftrightarrow x+6=x+6\left(đúng\forall x\right)\)

Vậy \(x\le-6\)

7) ĐKXĐ: \(x\ge\dfrac{2}{3}\)

\(pt\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x-2\Leftrightarrow\left|3x-2\right|=3x-2\)

\(\Leftrightarrow3x-2=3x-2\left(đúng\forall x\right)\)

Vậy \(x\ge\dfrac{2}{3}\)

8) ĐKXĐ: \(x\ge5\)

\(pt\Leftrightarrow\sqrt{\left(4-3x\right)^2}=2x-10\)\(\Leftrightarrow\left|4-3x\right|=2x-10\)

\(\Leftrightarrow4-3x=10-2x\Leftrightarrow x=-6\left(ktm\right)\Leftrightarrow S=\varnothing\)

9) ĐKXĐ: \(x\ge\dfrac{3}{2}\)

\(pt\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x-3\Leftrightarrow\left|x-3\right|=2x-3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x-3\left(x\ge3\right)\\x-3=3-2x\left(\dfrac{3}{2}\le x< 3\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)