Tìm x
(2x-1)^3+3(2x+3)^2=26
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4\left(x+1\right)\left(-x+2\right)+\left(2x-1\right)\left(2x+3\right)=-11\)
\(\text{⇔}-4x^2+4x+8+4x^2+4x-3=-11\)
\(\text{⇔}8x+5=-11\)
\(\text{⇔}8x=-16\)
\(\text{⇔}x=-2\)
Vậy: \(x=-2\)
==========
\(\left(2x+4\right)\left(3x+1\right)\left(x-2\right)-\left(-3x^2+1\right)\left(-2x+\dfrac{2}{3}\right)=-\dfrac{26}{3}\)
\(\text{⇔}6x^3+2x^2-24x-8-6x^3-2x^2-2x+\dfrac{2}{3}=-\dfrac{26}{3}\)
\(\text{⇔}-26x-\dfrac{22}{3}=-\dfrac{26}{3}\)
\(\text{⇔}-26x=-\dfrac{4}{3}\)
\(\text{⇔}x=\dfrac{2}{39}\)
a) \(\frac{-x}{2}+\frac{2x}{3}+x+\frac{1}{4}+2x+\frac{1}{6}=\frac{3}{8}.\)
\(\frac{-x}{2}+\frac{2x}{3}+3x+\frac{5}{12}=\frac{3}{8}\)
\(x.\left(-\frac{1}{2}+\frac{2}{3}+3\right)+\frac{5}{12}=\frac{3}{8}\)
\(x\cdot\frac{19}{6}=-\frac{1}{24}\)
x = -1/76
b) \(\frac{3}{2x+1}+\frac{10}{4x+2}-\frac{6}{6x+3}=\frac{12}{26}\)
\(\frac{3}{2x+1}+\frac{2.5}{2.\left(2x+1\right)}-\frac{2.3}{3.\left(2x+1\right)}=\frac{6}{13}\)
\(\frac{3}{2x+1}+\frac{5}{2x+1}-\frac{2}{2x+1}=\frac{6}{13}\)
\(\frac{3+5-2}{2x+1}=\frac{6}{13}\)
\(\frac{6}{2x+1}=\frac{6}{13}\)
=> 2x + 1 = 13
2x = 12
x = 6
\(a,-\dfrac{x}{2}+\dfrac{2x}{3}+\dfrac{x+1}{4}+\dfrac{2x+1}{6}=\dfrac{8}{3}\)
\(\Rightarrow-\dfrac{6x}{12}+\dfrac{8x}{12}+\dfrac{3\left(x+1\right)}{12}+\dfrac{2\left(2x+1\right)}{12}=\dfrac{8}{3}\)
\(\Rightarrow\dfrac{-6x+8x+3x+3+4x+2}{12}=\dfrac{8}{3}\)
\(\Rightarrow\dfrac{9x+5}{12}=\dfrac{8}{3}\)
\(\Rightarrow27x+15=96\)
\(\Rightarrow27x=81\)
\(\Rightarrow x=3\left(tm\right)\)
\(b,\dfrac{3}{2x+1}+\dfrac{10}{4x+2}-\dfrac{6}{6x+3}=\dfrac{12}{26}\)
\(\Rightarrow\dfrac{3}{2x+1}+\dfrac{10}{2\left(2x+1\right)}-\dfrac{6}{3\left(2x+1\right)}=\dfrac{6}{13}\)
\(\Rightarrow\dfrac{3}{2x+1}+\dfrac{5}{2x+1}-\dfrac{2}{2x+1}=\dfrac{6}{13}\)
\(\Rightarrow\dfrac{3+5-2}{2x+1}=\dfrac{6}{13}\)
\(\Rightarrow\dfrac{6}{2x+1}=\dfrac{6}{13}\)
\(\Rightarrow2x+1=13\)
\(\Rightarrow2x=12\)
\(\Rightarrow x=6\left(tm\right)\)
#Toru
a) \(-\dfrac{x}{2}+\dfrac{2x}{3}+\dfrac{x+1}{4}+\dfrac{2x+2}{6}=\dfrac{8}{3}\)
\(\Rightarrow\dfrac{-6x}{12}+\dfrac{8x}{12}+\dfrac{3\left(x+1\right)}{12}+\dfrac{2\left(2x+1\right)}{12}=\dfrac{4\cdot8}{12}\)
\(\Rightarrow-6x+8x+3x+3+4x+2=32\)
\(\Rightarrow9x+5=32\)
\(\Rightarrow9x=32-5\)
\(\Rightarrow9x=27\)
\(\Rightarrow x=\dfrac{27}{9}\)
\(\Rightarrow x=3\)
b) \(\dfrac{3}{2x+1}+\dfrac{10}{4x+2}-\dfrac{6}{6x+3}=\dfrac{12}{26}\) (ĐK: \(x\ne-\dfrac{1}{2}\))
\(\Rightarrow\dfrac{3}{2x+1}+\dfrac{10}{2\left(2x+1\right)}-\dfrac{6}{3\left(2x+1\right)}=\dfrac{6}{13}\)
\(\Rightarrow\dfrac{3}{2x+1}+\dfrac{5}{2x+1}-\dfrac{2}{2x+1}=\dfrac{6}{13}\)
\(\Rightarrow\dfrac{6}{2x+1}=\dfrac{6}{13}\)
\(\Rightarrow2x+1=13\)
\(\Rightarrow2x=12\)
\(\Rightarrow x=\dfrac{12}{2}\)
\(\Rightarrow x=6\left(tm\right)\)
x(2x - 3) - 2(3 - 2x) = 0
x(2x - 3) + 2(2x - 3) = 0
(2x - 3)(x + 2) = 0
\(\left[\begin{array}{nghiempt}2x-3=0\\x+2=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=\frac{3}{2}\\x=-2\end{array}\right.\)
2x(x - 5) - x(3 + 2x) = 26
2x2 - 10x - 3x - 2x2 = 26
- 13x = 26
x = - 26 : 13
x = - 2
Bài 2:
a: \(\Leftrightarrow2x^2-10x-3x-2x^2=26\)
=>-13x=26
hay x=-2
b: \(\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\)
hay \(x\in\left\{1;\dfrac{1}{5}\right\}\)
c: \(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)
hay \(x\in\left\{-5;2\right\}\)
`@` `\text {Ans}`
`\downarrow`
`a)`
`(2x - 1)^2 + 1 = 26`
`\Rightarrow (2x - 1)^2 = 26 - 1`
`\Rightarrow (2x - 1)^2 = 25`
`\Rightarrow (2x - 1)^2 = (+-5)^2`
`\Rightarrow`\(\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\)
`\Rightarrow`\(\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\)
`\Rightarrow`\(\left[{}\begin{matrix}x=6\div2\\x=-4\div2\end{matrix}\right.\)
`\Rightarrow`\(\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy, `x \in`\(\left\{-2;3\right\}\)
`b)`
`(2x - 4)^3 + 2 = 66`
`\Rightarrow (2x - 4)^3 = 66 - 2`
`\Rightarrow (2x - 4)^3 = 64`
`\Rightarrow (2x - 4)^3 = 4^3`
`\Rightarrow 2x - 4 = 4`
`\Rightarrow 2x = 8`
`\Rightarrow x = 8 \div 2`
`\Rightarrow x = 3`
Vậy, `x = 3`
`c)`
\(7^{x+2}+5\cdot7^{x+1}+15=603\)
`\Rightarrow 7^x . 7^2 + 5 . 7^x . 7 = 603 - 15`
`\Rightarrow 7^x . 7^2 + 35 . 7^x = 588`
`\Rightarrow 7^x . (7^2 + 35) = 588`
`\Rightarrow 7^x . 84 = 588`
`\Rightarrow 7^x = 588 \div 84`
`\Rightarrow 7^x = 7`
`\Rightarrow 7^x = 7^1`
`\Rightarrow x = 1`
Vậy, `x = 1.`
\(#48Cd\)
\(a)\left(2x-1\right)^2+1=26\)
\(\left(2x-1\right)^2=25\)
\(TH1:2x-1=5\)
\(2x=6\)
\(x=3\)
\(TH2:2x-1=-5\)
\(2x=-4\)
\(x=-2\)
Vậy........
\(b)\left(2x-4\right)^3+2=66\)
\(\left(2x-4\right)^3=64=4^3\)
\(2x-4=4\)
\(2x=8\)
\(x=4\)
\(c)7^x+2+5.7^x+1+15=603\)
\(7^x\left(1+5\right)=603-15-1-2\)
\(7^x.6=585\)
Bạn xem lại phần này nhé . x tìm ra không được chẵn lắm á cậu.
a) \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(\Rightarrow2x^2-10x-3x-2x^2=26\)
\(\Rightarrow-13x=26\Rightarrow x=-2\)
b) \(3x\left(1-2x\right)+2\left(3x+7\right)=29\)
\(\Rightarrow3x-6x^2+6x+14=29\)
\(\Rightarrow-6x^2+9x-15=0\)
\(\Rightarrow-6\left(x^2-\dfrac{3}{2}x+\dfrac{9}{16}\right)-\dfrac{93}{8}=0\)
\(\Rightarrow-6\left(x-\dfrac{3}{4}\right)^2-\dfrac{93}{8}=0\)(vô lý)
Vậy \(S=\varnothing\)
\(\left(2x-1\right)^3+3\left(2x+3\right)^2=26\)
\(\Leftrightarrow\left(2x\right)^3-3\left(2x\right)^2+3.2x-1+3\left(4x^2+12x+9\right)=26\)
\(\Leftrightarrow8x^3-12x^2+6x-1+12x^2+36x+27=26\)
\(\Leftrightarrow8x^3+42x+26=26\)
\(\Leftrightarrow8x^3+42x=0\)
\(\Leftrightarrow4x\left(2x^2+13\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=0\\2x^2+13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\2x^2=-13\left(L\right)\end{matrix}\right.\)
Vậy \(x=0\)