Tìm x thuộc Z để mỗi p/s sau là 1 số TN:
a)\(\frac{x+6}{x+1}\)
b)\(\frac{x-2}{x+3}\)
c)\(\frac{2x+1}{x-3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
điều kiện \(x\ge0\)và x khác 1/4
Q= \(\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}=\frac{3x+14\sqrt{x}+8+2x-3\sqrt{x}+1-x+6\sqrt{x}-5}{2x+7\sqrt{x}-4}\)
=\(\frac{4x+17\sqrt{x}+4}{2x+7\sqrt{x}-4}\)
đề Q>1/2 thì \(\frac{4x+17\sqrt{x}+4}{2x+7\sqrt{x}-4}>\frac{1}{2}\)
<=> \(8x+34\sqrt{x}+8>2x+7\sqrt{x}-4\)<=> \(6x+27\sqrt{x}+12>0\) với mọi x>=0
vậy Q>1/2 khi x>=0 và x khác 1/4
a)\(\frac{\left(x+1\right)-4}{x+1}=1-\frac{4}{x+1}\Rightarrow x+1\inƯ\left(4\right)=\left\{1,-1,2,-2,4,-4\right\}\Rightarrow x=\left\{0,-2,1,-3,3,-5\right\}\)
b)\(\frac{\left(x-5\right)+12}{x-5}=1+\frac{12}{x-5}\Rightarrow x-5\inƯ\left(12\right)=\left\{1,-1,2,-2,3,-3,4,-4,6,-6,12,-12\right\}\Rightarrow x=\left\{6,4,7,3,8,2,9,1,11,-1,17,-7\right\}\)
\(A=\left(\frac{x+1}{x^3+1}-\frac{1}{x-x^2-1}-\frac{2}{x+1}\right)\div\left(\frac{x^2-2x}{x^3-x^2+x}\right)\)
a) ĐKXĐ : \(\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)
\(=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1}{x^2-x+1}-\frac{2}{x+1}\right)\div\left(\frac{x\left(x-2\right)}{x\left(x^2-x+1\right)}\right)\)
\(=\left(\frac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{1\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right)\div\frac{x-2}{x^2-x+1}\)
\(=\left(\frac{x+1+x+1-2x^2+2x-2}{\left(x+1\right)\left(x^2-x+1\right)}\right)\times\frac{x^2-x+1}{x-2}\)
\(=\frac{-2x^2+4x}{\left(x+1\right)\left(x^2-x+1\right)}\times\frac{x^2-x+1}{x-2}\)
\(=\frac{-2x\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}=\frac{-2x}{x+1}\)
b) \(\left|x-\frac{3}{4}\right|=\frac{5}{4}\)
<=> \(\orbr{\begin{cases}x-\frac{3}{4}=\frac{5}{4}\\x-\frac{3}{4}=-\frac{5}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\left(loai\right)\\x=-\frac{1}{2}\left(nhan\right)\end{cases}}\)
Với x = -1/2 => \(A=\frac{-2\cdot\left(-\frac{1}{2}\right)}{-\frac{1}{2}+1}=2\)
c) Để A ∈ Z thì \(\frac{-2x}{x+1}\)∈ Z
=> -2x ⋮ x + 1
=> -2x - 2 + 2 ⋮ x + 1
=> -2( x + 1 ) + 2 ⋮ x + 1
Vì -2( x + 1 ) ⋮ ( x + 1 )
=> 2 ⋮ x + 1
=> x + 1 ∈ Ư(2) = { ±1 ; ±2 }
x+1 | 1 | -1 | 2 | -2 |
x | 0 | -2 | 1 | -3 |
Các giá trị trên đều tm \(\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)
Vậy x ∈ { -3 ; -2 ; 0 ; 1 }
a)\(P=\left[\frac{2}{\left(x+1\right)^3}.\left(\frac{1}{x}+1\right)+\frac{1}{x^2+2x+1}.\left(\frac{1}{x^2}+1\right)\right]:\frac{x-1}{x^3}\left(ĐKXĐ:x\ne0;-1\right)\)
\(P=\left[\frac{2}{\left(x+1\right)^3}.\left(\frac{x+1}{x}\right)+\frac{1}{\left(x+1\right)^2}.\left(\frac{x^2+1}{x^2}\right)\right]:\frac{x-1}{x^3}\)
\(P=\left[\frac{2}{\left(x+1\right)^2x}+\frac{x^2+1}{\left[x\left(x+1\right)\right]^2}\right]:\frac{x-1}{x^3}\)
\(P=\left[\frac{x^2+2x+1}{\left[x\left(x+1\right)\right]^2}\right]:\frac{x-1}{3}\)
\(P=\frac{\left(x+1\right)^2}{x^2\left(x+1\right)^2}:\frac{x-1}{3}\)
\(P=\frac{3}{x^2\left(x-1\right)}\)
b)Bài này liên quan đến dấu lớn nên mk ko làm đc
\(a,ĐKXĐ:x\ne0;x\ne1\)
\(A=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2-x^2}{x^2-x}\right)\)
\(A=\frac{x^2+x}{\left(x-1\right)^2}:\left[\frac{\left(x+1\right)\left(x-1\right)}{x\left(x-1\right)}+\frac{1}{x\left(x-1\right)}+\frac{2-x^2}{x^2-x}\right]\)
\(A=\frac{x^2+x}{\left(x-1\right)^2}:\left(\frac{x^2-1+1+2-x^2}{x^2-x}\right)\)
\(A=\frac{x^2+x}{\left(x-1\right)^2}:\frac{2}{x\left(x-1\right)}\)
\(A=\frac{x\left(x+1\right)}{\left(x-1\right)^2}.\frac{x\left(x-1\right)}{2}\)
\(A=\frac{x^2\left(x+1\right)}{2\left(x-1\right)}=\frac{x^3+x^2}{2x-2}\)
a) ta có: \(\frac{x+6}{x+1}=\frac{x+1+5}{x+1}=1+\frac{5}{x+1}\)
Để \(\frac{x+6}{x+1}\in Z\)
=> 5/x+1 thuộc Z
=> 5 chia hết cho x + 1
=> x + 1 thuộc Ư(5)={1;-1;5;-5}
...
rùi bn tự lập bảng xét giá trị hộ mk nha! câu b lm tương tự
c) ta có: \(\frac{2x+1}{x-3}=\frac{2x-6+7}{x-3}=\frac{2.\left(x-3\right)+7}{x-3}=2+\frac{7}{x-3}\)
...
\(a,\frac{x+6}{x+1}\inℤ\Leftrightarrow x+6⋮x+1\)
\(\Rightarrow x+1+5⋮x+1\)
\(x+1⋮x+1\)
\(\Rightarrow5⋮x+1\)
\(\Rightarrow x+1\inƯ\left(5\right)\)
\(\Rightarrow x+1\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow x\in\left\{-2;0;-6;4\right\}\)
vậy_
\(c,\frac{2x+1}{x-3}\inℤ\Leftrightarrow2x+1⋮x-3\)
\(\Rightarrow2x-6+7⋮x-3\)
\(\Rightarrow2\left(x-3\right)+7⋮x-3\)
\(2\left(x-3\right)⋮x-3\)
\(\Rightarrow7⋮x-3\)
\(\Rightarrow x-3\inƯ\left(7\right)\)
\(\Rightarrow x-3\in\left\{-1;1;-7;7\right\}\)
\(\Rightarrow x\in\left\{2;4;-4;10\right\}\)
vậy_
phần b thì làm tương tự phần a