Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giả sử \(C=\frac{2x+3}{7}=t\left(t\in Z\right)\)
\(\Rightarrow x=\frac{7t-3}{2}\). Để \(x\in Z\) thì t phải lẻ. Nói cách khác \(t=2k+1\left(k\in Z\right)\)
Suy ra \(x=\frac{7\left(2k+1\right)-3}{2}=14k+2\)
Vậy để \(\frac{2x+3}{7}\in Z\) thì \(x=14k+2\left(k\in Z\right)\)
b) Ta thấy \(C=\frac{6x-1}{3x+2}=\frac{\left(6x+4\right)-5}{3x+2}=2-\frac{5}{3x+2}\)
Do x nguyên nên C đạt GTNN khi \(\frac{5}{3x+2}\) lớn nhất. Điều này xảy ra khi 3x + 2 = 2 hay x = 0.
Vậy \(minC=-\frac{1}{2}\) khi x = 0.
a) ta có: \(\frac{x+6}{x+1}=\frac{x+1+5}{x+1}=1+\frac{5}{x+1}\)
Để \(\frac{x+6}{x+1}\in Z\)
=> 5/x+1 thuộc Z
=> 5 chia hết cho x + 1
=> x + 1 thuộc Ư(5)={1;-1;5;-5}
...
rùi bn tự lập bảng xét giá trị hộ mk nha! câu b lm tương tự
c) ta có: \(\frac{2x+1}{x-3}=\frac{2x-6+7}{x-3}=\frac{2.\left(x-3\right)+7}{x-3}=2+\frac{7}{x-3}\)
...
\(a,\frac{x+6}{x+1}\inℤ\Leftrightarrow x+6⋮x+1\)
\(\Rightarrow x+1+5⋮x+1\)
\(x+1⋮x+1\)
\(\Rightarrow5⋮x+1\)
\(\Rightarrow x+1\inƯ\left(5\right)\)
\(\Rightarrow x+1\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow x\in\left\{-2;0;-6;4\right\}\)
vậy_
\(c,\frac{2x+1}{x-3}\inℤ\Leftrightarrow2x+1⋮x-3\)
\(\Rightarrow2x-6+7⋮x-3\)
\(\Rightarrow2\left(x-3\right)+7⋮x-3\)
\(2\left(x-3\right)⋮x-3\)
\(\Rightarrow7⋮x-3\)
\(\Rightarrow x-3\inƯ\left(7\right)\)
\(\Rightarrow x-3\in\left\{-1;1;-7;7\right\}\)
\(\Rightarrow x\in\left\{2;4;-4;10\right\}\)
vậy_
phần b thì làm tương tự phần a
a) Để \(\frac{-3}{x-1}\in Z\) \(\Leftrightarrow-3⋮\left(x-1\right)\)
\(\Rightarrow x-1\inƯ\left(-3\right)=\left\{-1;1;-3;3\right\}\)
\(\Rightarrow x=\left\{2;0;4;-2\right\}\)
b) Để \(\frac{-4}{2x-1}\in Z\Leftrightarrow-4⋮\left(2x-1\right)\)
\(\Rightarrow2x-1\inƯ\left(-4\right)=\left\{-1;1;-2;2;-4;4\right\}\)
\(\Rightarrow2x=\left\{0;2;-1;3;-3;5\right\}\)
\(\Rightarrow x=\left\{0;1;\frac{-1}{2};\frac{3}{2};\frac{-3}{2};\frac{5}{2}\right\}\)
Mà \(x\in Z\) \(\Rightarrow x=\left\{0;2\right\}\)
c) \(\frac{3x+7}{x-1}=\frac{3\left(x-1\right)+10}{x-1}\)
Vì \(3\left(x-1\right)⋮\left(x-1\right)\Rightarrow10⋮\left(x-1\right)\)
\(\Rightarrow x-1\inƯ\left(10\right)=\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
\(\Rightarrow x=\left\{2;0;3;-1;6;-4;11;-9\right\}\)
d) Tương tự
\(B=\frac{2x+4-5}{x+2}\)
\(B=2-\frac{5}{x+2}\)
Để B nguyên thì \(\frac{5}{x+2}\)phải là số nguyên
\(\Rightarrow5⋮\left(x+2\right)\)
\(\Rightarrow\left(x+2\right)\inƯ\left(5\right)\)
\(\Rightarrow\left(x+2\right)\in\left\{+5,-5,+1,-1,0\right\}\)
\(\Rightarrow\left(x\right)\in\left\{+3,-7,-1,-3,-2\right\}\)
Vậy \(\left(x\right)\in\left\{+3,-7,-1,-3,-2\right\}\)
CHÚC BẠN HỌC TỐT
\(\frac{-3}{x-1}\)nguyên khi và chỉ khi -3 chia hết cho x - 1 hay x - 1 là ước của 3
\(\frac{-4}{2x-1}\)nguyên khi và chỉ khi -4 chia hết cho 2x - 1 hay 2x - 1 là ước của 4
Lấy 3x + 7 chia x - 1 => \(\frac{4}{x-1}\)nguyên khi và chỉ khi 4 chia hết cho x - 1 hay x - 1 là ước của 4
Mk chỉ làm đc vậy thui à!!!!!
a) \(\frac{-3}{x-1}\Rightarrow\frac{-3}{x-1}=-3\)để x nguyên
\(\frac{-3}{1}=3\Rightarrow\frac{-3}{1+1}=x=2\)
\(\Rightarrow x=2\)
b)\(\frac{-4}{2x-1}=-4\)để x nguyên
\(\frac{-4}{1}=-4\Rightarrow\frac{-4}{\left(1+1\right)\div2}=x=1\)
\(\Rightarrow x=1\)
c) \(\frac{3x+7}{x-1}=5\)để x nguyên
\(\frac{25}{5}=5\Rightarrow\frac{\left(25-7\right)\div3}{5+1}=x=6\)
\(\Rightarrow x=6\)
d) \(\frac{4x-1}{3-x}=7\)để x nguyên
\(\frac{7}{1}=7\Rightarrow\frac{\left(7+1\right)\div4}{3-1}=x=2\)
\(\Rightarrow x=2\)
a)\(\frac{\left(x+1\right)-4}{x+1}=1-\frac{4}{x+1}\Rightarrow x+1\inƯ\left(4\right)=\left\{1,-1,2,-2,4,-4\right\}\Rightarrow x=\left\{0,-2,1,-3,3,-5\right\}\)
b)\(\frac{\left(x-5\right)+12}{x-5}=1+\frac{12}{x-5}\Rightarrow x-5\inƯ\left(12\right)=\left\{1,-1,2,-2,3,-3,4,-4,6,-6,12,-12\right\}\Rightarrow x=\left\{6,4,7,3,8,2,9,1,11,-1,17,-7\right\}\)