Tính:
a, (1+\(\frac{1}{2}\)).(1+\(\frac{1}{3}\)).(1+\(\frac{1}{4}\))........(1+\(\frac{1}{2018}\))
Làm ơn giúp mn nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2017}}\)
\(\Rightarrow2A-A=2-\frac{1}{2^{2018}}\)
\(\Rightarrow A=\frac{2^{2019}-1}{2^{2018}}\)
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2018}}\)
\(\Rightarrow2A=2+1+\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{2017}}\)
\(\Rightarrow2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+........+\frac{1}{2^{2017}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+......+\frac{1}{2^{2018}}\right)\)
\(\Rightarrow A=2-\frac{1}{2^{2018}}\)
\(\Rightarrow A=\frac{2^{2019}-1}{2^{2018}}\)
Ta có:
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)........\left(1-\frac{1}{2017}\right).\left(1-\frac{1}{2018}\right)\)
\(\Rightarrow B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.......\frac{2016}{2017}.\frac{2017}{2018}\)
Đởn giản hết sẽ còn là:
\(\Rightarrow B=\frac{1}{2018}\)
a)
\(\begin{array}{l}{\left( {1 + \frac{1}{2} - \frac{1}{4}} \right)^2}.\left( {2 + \frac{3}{7}} \right)\\ = {\left( {\frac{4}{4} + \frac{2}{4} - \frac{1}{4}} \right)^2}.\left( {\frac{{14}}{7} + \frac{3}{7}} \right)\\ = {\left( {\frac{5}{4}} \right)^2}.\frac{{17}}{7}\\ = \frac{{25}}{{16}}.\frac{{17}}{7}\\ = \frac{{425}}{{112}}\end{array}\)
b)
\(\begin{array}{l}4:{\left( {\frac{1}{2} - \frac{1}{3}} \right)^3}\\ = 4:{\left( {\frac{3}{6} - \frac{2}{6}} \right)^3}\\ = 4:{\left( {\frac{1}{6}} \right)^3}\\ = 4:\frac{1}{{216}}\\ = 4.216\\ = 864\end{array}\)
a, \(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{x\cdot\left(x+1\right)\cdot\left(x+2\right)}=\frac{2018}{2019}\)
\(=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot3}+...+\frac{1}{x\cdot\left(x+1\right)}-\frac{1}{\left(x+1\right)\cdot\left(x+2\right)}=\frac{2018}{2019}\)
\(=1-\frac{1}{\left(x+1\right)\cdot\left(x+2\right)}=\frac{2018}{2019}\)
\(\Rightarrow\frac{1}{\left(x+1\right)\cdot\left(x+2\right)}=1-\frac{2018}{2019}\)
\(\Rightarrow\frac{1}{\left(x+1\right)\cdot\left(x+2\right)}=\frac{2019}{2019}-\frac{2018}{2019}=\frac{1}{2019}\)
Đến đây bn tự tính nhé !!
\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)....\left(1+\frac{1}{2018}\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{2018}{2017}.\frac{2019}{2018}\)
\(=\frac{3.4.5.6.....2018.2019}{2.3.4.5....2017.2018}=\frac{2019}{2}\)
\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)....\left(1+\frac{1}{2018}\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{2019}{2018}\)
\(=\frac{3.4.5....2019}{2.3.4....2018}\)
\(=\frac{2019}{2}\)