K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2018

Có \(a\left(b+1\right)< b\left(a+1\right)\Leftrightarrow ab+a< ab+b\)

\(\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)

Áp dụng \(\frac{2^{2018}}{3^{2019}}< \frac{2^{2018}+1}{3^{2019}+1}\)

28 tháng 12 2018

Ta có:

\(1-\frac{a}{b}=\frac{b-a}{b}\)

\(1-\frac{a+1}{b+1}=\frac{b+1-a-1}{b+1}=\frac{b-a}{b+1}\)

Vì b < b + 1 và a < b; a, b nguyên dương  => b - a > 0 nên \(\frac{b-a}{b}>\frac{b-a}{b+1}\)

Do đó \(1-\frac{a}{b}>1-\frac{a+1}{b+1}\)

\(\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)

Áp dụng chứng minh tương tự nhé bạn

18 tháng 12 2016

1/h=1/2(1/a+1/b)=1/2a+1/2b=(a+b)/2ab

=>(a+b/)2ab-1/h=0

quy dong len ta co

(a+b)h/2abh-2ab/2abh=0=> (ah+bh-2ab)/2abh=0 =>ah+bh-2ab=0

                                                                       =>ah+bh-ab-ab=0

                                                                         =>a(h-b)-b(a-h)=0  

                                                                           =>a(h-b)=b(a-h)

                                                                              =>a/b=(a-h)(h-b)

                                                                       

25 tháng 10 2016

Alayna Ko biết :)

25 tháng 10 2016

A = \(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}\)

=> 4A = \(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2012}}\)

=> 3A = \(1-\frac{1}{4^{2012}}\)

=> A = \(\frac{1-\frac{1}{4^{2012}}}{3}\)

Vậy A \(< \frac{1}{3}\)

16 tháng 10 2016

A=(1-1/1)+(1-1/4)+(1-1/9)+(1/16)+..........+(1-1/100)

=>1-99/100

17 tháng 10 2016

33/2500