Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\cdot...\left(\frac{1}{10}-1\right)\)
\(A=\left(\frac{1}{2}-\frac{2}{2}\right)\left(\frac{1}{3}-\frac{3}{3}\right)\cdot...\cdot\left(\frac{1}{10}-\frac{10}{10}\right)\)
\(A=\left(-\frac{1}{2}\right)\cdot\left(-\frac{2}{3}\right)\cdot...\cdot\left(-\frac{9}{10}\right)\)
\(A=\frac{-1}{2}\cdot\frac{-2}{3}\cdot...\cdot\frac{-9}{10}\)
\(A=\frac{\left(-1\right)\cdot\left(-2\right)\cdot...\cdot\left(-9\right)}{2\cdot3\cdot...\cdot10}\)
\(A=\frac{\left(-1\right)\cdot2\cdot...\cdot9}{2\cdot3\cdot...\cdot10}=\frac{-1}{10}\)
Mà \(\frac{-1}{10}>\frac{-1}{9}\)nên A > -1/9
Phần cuối tương tự
a = 1+ 1/2 +1/3+...+1/ 1025 + 1/1026
a= 1+ (1/12+1/3+....+1/1025) - (1/2+1/3+...+1/1025+ 1/1026)
a= 1+ (1/2- 1/1026)
a= 1+ 256/513
a= 283/171
ko chắc chắn
đúng k nha
Ta có:
AB=1+1/2+1/3+...+1/4026/1+1/3+1/5+1/7+...+1/4025
⇒AB=(1+1/3+1/5+...+1/4025)+(1/2+1/4+...+1/2046)1+1/3+1/5+...+1/4025
⇒AB=1+1/3+1/5+...+1/4025/1+1/3+1/5+....+1/4025+1/2+1/4+...+1/4026/1+1/3+1/5+...+1/4025
⇒AB=1+1/2+1/4+...+1/2046/1+1/3+1/5+...+1/4025
Dễ thấy AB>1
Mà 20132014<1