\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2018}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2019

ta có:

\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2017}}\)

\(\Rightarrow2A-A=2-\frac{1}{2^{2018}}\)

\(\Rightarrow A=\frac{2^{2019}-1}{2^{2018}}\)

4 tháng 3 2019

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2018}}\)

\(\Rightarrow2A=2+1+\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{2017}}\)

\(\Rightarrow2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+........+\frac{1}{2^{2017}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+......+\frac{1}{2^{2018}}\right)\)

\(\Rightarrow A=2-\frac{1}{2^{2018}}\)

\(\Rightarrow A=\frac{2^{2019}-1}{2^{2018}}\)

8 tháng 8 2018

\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)....\left(1+\frac{1}{2018}\right)\)

\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{2018}{2017}.\frac{2019}{2018}\)

\(=\frac{3.4.5.6.....2018.2019}{2.3.4.5....2017.2018}=\frac{2019}{2}\)

8 tháng 8 2018

\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)....\left(1+\frac{1}{2018}\right)\)

\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{2019}{2018}\)

\(=\frac{3.4.5....2019}{2.3.4....2018}\)

\(=\frac{2019}{2}\)

Đề: X=\(\frac{1}{1+2}\)+\(\frac{1}{1+2+3}\)+.......+\(\frac{1}{1+2+3+4+20}\)

X=\(\frac{1}{2.3:2}\)+\(\frac{1}{3.4:2}\)+\(\frac{1}{4.5:2}\)+......+\(\frac{1}{20.21:2}\)

X=\(\frac{2}{2.3}\)+\(\frac{2}{3.4}\)\(\frac{2}{4.5}\)+........+\(\frac{2}{20.21}\)

X=2.(\(\frac{1}{2}\).3+\(\frac{1}{3}\).4+\(\frac{1}{4}\).5+.....+\(\frac{1}{20}\).21)

X=2.(\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+......+\(\frac{1}{20}\)-\(\frac{1}{21}\))

X=2.(\(\frac{1}{2}\)-\(\frac{1}{21}\))

X=2.(\(\frac{21}{42}\)-\(\frac{2}{42}\))

X=2.\(\frac{19}{42}\)

X=\(\frac{19}{21}\)

Mn xem thử đúng ko nha!

3 tháng 2 2020

Ta có: \(1+2=\frac{2.3}{2}\)\(1+2+3=\frac{3.4}{2}\); .......... ; \(1+2+3+....+20=\frac{20.21}{2}\)

\(\Rightarrow X=\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+.......+\frac{1}{\frac{20.21}{2}}\)

\(=\frac{2}{2.3}+\frac{2}{3.4}+........+\frac{2}{20.21}=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{20.21}\right)\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..........+\frac{1}{20}-\frac{1}{21}\right)=2.\left(\frac{1}{2}-\frac{1}{21}\right)=2.\frac{19}{42}=\frac{19}{21}\)

29 tháng 4 2020

bài 1 :

\(\frac{2}{3}\)+\(\frac{1}{3}\)=\(\frac{3}{3}\)=1

\(\frac{3}{4}\)+\(\frac{2}{4}\)+\(\frac{1}{4}\)=\(\frac{4}{4}\)=1

\(\frac{4}{5}\)+\(\frac{3}{5}\)+\(\frac{2}{5}\)+\(\frac{1}{5}\)=\(\frac{10}{5}\)= 2 

chúc bạn học tốt !!!

29 tháng 4 2020

nếu có thì kết bạn rrrrrtt3448Y ok

19 tháng 2 2020

\(A=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{99\cdot100}\)

\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{50}\)

\(A=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\) 

21 tháng 2 2020

Cảm ơn bạn Uyên nhiều nha!

^_^^_^^_^

29 tháng 4 2018

\(a,\left(4\frac{1}{2}-\frac{2}{5}x\right):1\frac{3}{4}=\frac{11}{14}\)

\(\Rightarrow\left(\frac{9}{2}-\frac{2}{5}x\right):\frac{7}{4}=\frac{11}{4}\)

\(\Rightarrow\left(\frac{9}{2}-\frac{2}{5}x\right)=\frac{11}{4}\cdot\frac{7}{4}\)

\(\Rightarrow\left(\frac{9}{2}-\frac{2}{5}x\right)=\frac{77}{16}\)

\(\Rightarrow\frac{9}{2}-\frac{2}{5}x=\frac{77}{16}\)

\(\Rightarrow-\frac{2}{5}x=\frac{77}{16}-\frac{9}{2}\)

\(\Rightarrow-\frac{2}{5}x=\frac{5}{16}\)

\(\Rightarrow x=\frac{5}{16}:\left(-\frac{2}{5}\right)\)

\(\Rightarrow x=-\frac{25}{32}\)

\(b,\frac{2}{3}\cdot x-\frac{2}{5}x=\frac{9}{3}\)

\(\Rightarrow x\left(\frac{2}{3}-\frac{2}{5}\right)=\frac{8}{3}\)

\(\Rightarrow x\cdot\frac{4}{15}=\frac{8}{3}\)

\(\Rightarrow x=\frac{8}{3}:\frac{4}{15}\)

\(\Rightarrow x=10\)

29 tháng 4 2018

\(c,\frac{-2}{3}|x|+1\frac{1}{2}=\frac{2}{5}\)

\(\Rightarrow\frac{-2}{3}|x|+\frac{3}{2}=\frac{2}{5}\)

\(\Rightarrow\frac{-2}{3}|x|=\frac{2}{5}-\frac{3}{2}\)

\(\Rightarrow\frac{-2}{3}|x|=-\frac{11}{10}\)

\(\Rightarrow|x|=\frac{-11}{10}:\frac{-2}{3}\)

\(\Rightarrow|x|=\frac{33}{20}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{33}{20}\\x=-\frac{33}{20}\end{cases}}\)

\(d,|2x-\frac{1}{3}|+\frac{1}{6}=\frac{3}{4}\)

\(\Rightarrow|2x-\frac{1}{3}|=\frac{3}{4}-\frac{1}{6}\)

\(\Rightarrow|2x-\frac{1}{3}|=\frac{7}{12}\)

\(\Rightarrow\orbr{\begin{cases}2x-\frac{1}{3}=\frac{7}{12}\\2x-\frac{1}{3}=-\frac{7}{12}\end{cases}\Rightarrow\orbr{\begin{cases}2x=\frac{11}{12}\\2x=-\frac{1}{4}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{11}{24}\\x=-\frac{1}{8}\end{cases}}}\)

6 tháng 4 2019

\(P=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< 1+\frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)

\(P< 1+\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}=\frac{7}{4}-\frac{1}{2019}< \frac{7}{4}\)

a) \(\frac{\left(5.2\right)}{3.2}-\frac{1}{2}x+\frac{1}{3}+\frac{1}{5}=\frac{\left(3.2\right)}{5}\)

\(\Leftrightarrow\)\(\frac{1}{2}-\frac{1}{2}x+\frac{8}{15}=\frac{6}{5}\)

\(\Leftrightarrow\)\(\frac{1}{2}-\frac{2}{3}=\frac{1}{2}x\)

\(\Leftrightarrow\)\(-\frac{1}{6}=\frac{1}{2}x\)

\(\Leftrightarrow\)x=-1/3

b) VT= \(\frac{\left(3.5.4.2\right)}{5.2.3}=4\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right):6+4=4:\frac{2}{3}=6\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right):6=2\)

\(\Leftrightarrow x-\frac{1}{2}=12\)

=> x= 12,5