Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)....\left(1+\frac{1}{2018}\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{2018}{2017}.\frac{2019}{2018}\)
\(=\frac{3.4.5.6.....2018.2019}{2.3.4.5....2017.2018}=\frac{2019}{2}\)
\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)....\left(1+\frac{1}{2018}\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{2019}{2018}\)
\(=\frac{3.4.5....2019}{2.3.4....2018}\)
\(=\frac{2019}{2}\)
Đề: X=\(\frac{1}{1+2}\)+\(\frac{1}{1+2+3}\)+.......+\(\frac{1}{1+2+3+4+20}\)
X=\(\frac{1}{2.3:2}\)+\(\frac{1}{3.4:2}\)+\(\frac{1}{4.5:2}\)+......+\(\frac{1}{20.21:2}\)
X=\(\frac{2}{2.3}\)+\(\frac{2}{3.4}\)\(\frac{2}{4.5}\)+........+\(\frac{2}{20.21}\)
X=2.(\(\frac{1}{2}\).3+\(\frac{1}{3}\).4+\(\frac{1}{4}\).5+.....+\(\frac{1}{20}\).21)
X=2.(\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+......+\(\frac{1}{20}\)-\(\frac{1}{21}\))
X=2.(\(\frac{1}{2}\)-\(\frac{1}{21}\))
X=2.(\(\frac{21}{42}\)-\(\frac{2}{42}\))
X=2.\(\frac{19}{42}\)
X=\(\frac{19}{21}\)
Mn xem thử đúng ko nha!
Ta có: \(1+2=\frac{2.3}{2}\); \(1+2+3=\frac{3.4}{2}\); .......... ; \(1+2+3+....+20=\frac{20.21}{2}\)
\(\Rightarrow X=\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+.......+\frac{1}{\frac{20.21}{2}}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+........+\frac{2}{20.21}=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{20.21}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..........+\frac{1}{20}-\frac{1}{21}\right)=2.\left(\frac{1}{2}-\frac{1}{21}\right)=2.\frac{19}{42}=\frac{19}{21}\)
bài 1 :
\(\frac{2}{3}\)+\(\frac{1}{3}\)=\(\frac{3}{3}\)=1
\(\frac{3}{4}\)+\(\frac{2}{4}\)+\(\frac{1}{4}\)=\(\frac{4}{4}\)=1
\(\frac{4}{5}\)+\(\frac{3}{5}\)+\(\frac{2}{5}\)+\(\frac{1}{5}\)=\(\frac{10}{5}\)= 2
chúc bạn học tốt !!!
\(A=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{99\cdot100}\)
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{50}\)
\(A=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
\(a,\left(4\frac{1}{2}-\frac{2}{5}x\right):1\frac{3}{4}=\frac{11}{14}\)
\(\Rightarrow\left(\frac{9}{2}-\frac{2}{5}x\right):\frac{7}{4}=\frac{11}{4}\)
\(\Rightarrow\left(\frac{9}{2}-\frac{2}{5}x\right)=\frac{11}{4}\cdot\frac{7}{4}\)
\(\Rightarrow\left(\frac{9}{2}-\frac{2}{5}x\right)=\frac{77}{16}\)
\(\Rightarrow\frac{9}{2}-\frac{2}{5}x=\frac{77}{16}\)
\(\Rightarrow-\frac{2}{5}x=\frac{77}{16}-\frac{9}{2}\)
\(\Rightarrow-\frac{2}{5}x=\frac{5}{16}\)
\(\Rightarrow x=\frac{5}{16}:\left(-\frac{2}{5}\right)\)
\(\Rightarrow x=-\frac{25}{32}\)
\(b,\frac{2}{3}\cdot x-\frac{2}{5}x=\frac{9}{3}\)
\(\Rightarrow x\left(\frac{2}{3}-\frac{2}{5}\right)=\frac{8}{3}\)
\(\Rightarrow x\cdot\frac{4}{15}=\frac{8}{3}\)
\(\Rightarrow x=\frac{8}{3}:\frac{4}{15}\)
\(\Rightarrow x=10\)
\(c,\frac{-2}{3}|x|+1\frac{1}{2}=\frac{2}{5}\)
\(\Rightarrow\frac{-2}{3}|x|+\frac{3}{2}=\frac{2}{5}\)
\(\Rightarrow\frac{-2}{3}|x|=\frac{2}{5}-\frac{3}{2}\)
\(\Rightarrow\frac{-2}{3}|x|=-\frac{11}{10}\)
\(\Rightarrow|x|=\frac{-11}{10}:\frac{-2}{3}\)
\(\Rightarrow|x|=\frac{33}{20}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{33}{20}\\x=-\frac{33}{20}\end{cases}}\)
\(d,|2x-\frac{1}{3}|+\frac{1}{6}=\frac{3}{4}\)
\(\Rightarrow|2x-\frac{1}{3}|=\frac{3}{4}-\frac{1}{6}\)
\(\Rightarrow|2x-\frac{1}{3}|=\frac{7}{12}\)
\(\Rightarrow\orbr{\begin{cases}2x-\frac{1}{3}=\frac{7}{12}\\2x-\frac{1}{3}=-\frac{7}{12}\end{cases}\Rightarrow\orbr{\begin{cases}2x=\frac{11}{12}\\2x=-\frac{1}{4}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{11}{24}\\x=-\frac{1}{8}\end{cases}}}\)
\(P=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< 1+\frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)
\(P< 1+\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}=\frac{7}{4}-\frac{1}{2019}< \frac{7}{4}\)
a) \(\frac{\left(5.2\right)}{3.2}-\frac{1}{2}x+\frac{1}{3}+\frac{1}{5}=\frac{\left(3.2\right)}{5}\)
\(\Leftrightarrow\)\(\frac{1}{2}-\frac{1}{2}x+\frac{8}{15}=\frac{6}{5}\)
\(\Leftrightarrow\)\(\frac{1}{2}-\frac{2}{3}=\frac{1}{2}x\)
\(\Leftrightarrow\)\(-\frac{1}{6}=\frac{1}{2}x\)
\(\Leftrightarrow\)x=-1/3
b) VT= \(\frac{\left(3.5.4.2\right)}{5.2.3}=4\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right):6+4=4:\frac{2}{3}=6\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right):6=2\)
\(\Leftrightarrow x-\frac{1}{2}=12\)
=> x= 12,5
ta có:
\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2017}}\)
\(\Rightarrow2A-A=2-\frac{1}{2^{2018}}\)
\(\Rightarrow A=\frac{2^{2019}-1}{2^{2018}}\)
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2018}}\)
\(\Rightarrow2A=2+1+\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{2017}}\)
\(\Rightarrow2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+........+\frac{1}{2^{2017}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+......+\frac{1}{2^{2018}}\right)\)
\(\Rightarrow A=2-\frac{1}{2^{2018}}\)
\(\Rightarrow A=\frac{2^{2019}-1}{2^{2018}}\)