K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2018

đặt biểu thức trên bằng A rồi bạn tính 6A lấy 6A trừ cho A ra kết quả rồi chia cho 5 là đc

24 tháng 7 2018

Ta có: x^2 + y^2 +z^2 +1/x^2 +1/y^2 +1/z^2 =6

          (x^2 -2 + 1/x^2) +(y^2 -2 +1/y^2) +(z^2 -2 +1/z^2) = 0

          (x -1/x)^2 +(y-1/y)^2 +(z-1/z)^2 = 0

Suy ra: x- 1/x = 0 ,y- 1/y = 0 và z- 1/z = 0

            x^2 -1/ x= 0,y^2 -1/ y=0 và z^2-1 /z =0

            x^2 -1=0,y^2-1=0 và z^2-1=0

            x^2 = 1.y^2 =1 và z^2 =1

Do đó: x^2018 = y^2018 =z^2018 =1

Vậy A =x^2018 +y^2018 +z^2018 =3           

2 tháng 9 2019

=> (x+2020)/5=(x+2020)/6=(x+2020)/3+(x+2020)/2

=>(x+2020)(1/5+1/6)=(x+2020)(1/3+1/2)

Với x+2020=0=>x=-2020

Với x+2020 khác 0=>1/5+1/6=1/3+1/2 ,vô lí 

Vậy x=-2020

26 tháng 2 2020

tìm x sao cho :

a,(x+1)^2-3x*(1+x)=0

b,(-3)^x+1=-27

c,(-4)^x-2019=1024

tinh :B=6^2020-6^2019+6^2018-...+6^2-6

so sánh :

a,(-10)^6 và (-9)^8

b,(-10)^44 và (-9)^22

c,-5^300 và -3^453

d,-5^400 và -10^200

Đọc tiếp...

2 tháng 8 2019

a) \(\left(x+2018\right)\left(\frac{1}{2}+\frac{2}{7}\right)=\left(x+2018\right)\left(\frac{1}{5}+\frac{1}{6}\right)\)

\(\Leftrightarrow\) \(\left(x+2018\right)\left(\frac{1}{2}+\frac{2}{7}\right)-\left(x+2018\right)\left(\frac{1}{5}+\frac{1}{6}\right)\) = 0

\(\Leftrightarrow\left(x+2018\right)\left(\frac{1}{2}+\frac{2}{7}-\frac{1}{5}-\frac{1}{6}\right)=0\)

\(\Leftrightarrow x+2018=0\)

\(\Leftrightarrow x=-2018\)

b) \(7\left(x-1\right)+2x\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(7+2x\right)=0\)

\(\Leftrightarrow\) x - 1 = 0 hoặc 7 + 2x = 0

1) x - 1 = 0 \(\Leftrightarrow\) x = 1

2) 7 + 2x = 0 \(\Leftrightarrow\) -3,5

Vậy: x = 1; -3,5

2 tháng 8 2019

b) \(7\left(x-1\right)+2x\left(x-1\right)=0\)

=> \(\left(x-1\right).\left(7+2x\right)=0\)

=> \(\left\{{}\begin{matrix}x-1=0\\7+2x=0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=0+1\\2x=0-7=-7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=1\\x=\left(-7\right):2\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=1\\x=-\frac{7}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{1;-\frac{7}{2}\right\}.\)

Chúc bạn học tôt!

26 tháng 5 2017

\(\left(x+1\right)^6+\left(y-1\right)^4=-z^2\)

\(\Rightarrow\left(x+1\right)^6+\left(y-1\right)^4+z^2=0\)

Ta có: \(\hept{\begin{cases}\left(x+1\right)^6\ge0\\\left(y-1\right)^4\ge0\\z^2\ge0\end{cases}}\Rightarrow\left(x+1\right)^6+\left(y-1\right)^4+z^2\ge0\)

Mà \(\left(x+1\right)^6+\left(y-1\right)^4+z^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(x+1\right)^6=0\\\left(y-1\right)^4=0\\z^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\\z=0\end{cases}}\)

Thay x = -1, y = 1, z = 0 vào P

\(\Rightarrow P=2018.\left(-1\right)^{2016}.1^{2017}-\left(0-1\right)^{2018}\)

\(=2018-1=2017\)

Vậy...

1 tháng 1 2018

\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+.........+\dfrac{2}{x\left(x+1\right)}=\dfrac{2016}{2017}\)

\(\Leftrightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+........+\dfrac{2}{x\left(x+1\right)}=\dfrac{2016}{2017}\)

\(\Leftrightarrow\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+..........+\dfrac{2}{x\left(x+1\right)}=\dfrac{2016}{2018}\)

\(\Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+......+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2016}{2018}\)

\(\Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{x+1}\right)=\dfrac{2016}{2018}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1008}{2018}\)

\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2018}\)

\(\Leftrightarrow x+1=2018\)

\(\Leftrightarrow x=2017\)

Vậy ..

1 tháng 1 2018

\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2016}{2018}\)

\(\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{1008}{1009}\)

\(2.\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{1008}{1009}\)

\(2.\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{1008}{1009}\)

\(2.\left(\dfrac{1}{2}-\dfrac{1}{x-1}\right)\) = \(\dfrac{1008}{1009}\)

\(\dfrac{1}{2}-\dfrac{1}{x-1}=\dfrac{504}{1009}\)

\(\dfrac{1}{x-1}=\dfrac{1}{2018}\)

\(x-1=2018\)

\(x=2019\)

30 tháng 3 2017

\(\frac{1}{3}\) + \(\frac{1}{6}\) + \(\frac{1}{10}\) + ... + \(\frac{1}{x\left(x+1\right):2}\)

= \(\left(1-\frac{1}{2018}\right)-\frac{1}{2018}\) 

\(\frac{2017}{2018}-\frac{1}{2018}\)

\(\frac{2016}{2018}=\frac{1008}{1009}\)