Tinh: 1 x 6^1 x 6^2 x ... x 6^2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: x^2 + y^2 +z^2 +1/x^2 +1/y^2 +1/z^2 =6
(x^2 -2 + 1/x^2) +(y^2 -2 +1/y^2) +(z^2 -2 +1/z^2) = 0
(x -1/x)^2 +(y-1/y)^2 +(z-1/z)^2 = 0
Suy ra: x- 1/x = 0 ,y- 1/y = 0 và z- 1/z = 0
x^2 -1/ x= 0,y^2 -1/ y=0 và z^2-1 /z =0
x^2 -1=0,y^2-1=0 và z^2-1=0
x^2 = 1.y^2 =1 và z^2 =1
Do đó: x^2018 = y^2018 =z^2018 =1
Vậy A =x^2018 +y^2018 +z^2018 =3
![](https://rs.olm.vn/images/avt/0.png?1311)
=> (x+2020)/5=(x+2020)/6=(x+2020)/3+(x+2020)/2
=>(x+2020)(1/5+1/6)=(x+2020)(1/3+1/2)
Với x+2020=0=>x=-2020
Với x+2020 khác 0=>1/5+1/6=1/3+1/2 ,vô lí
Vậy x=-2020
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(x+2018\right)\left(\frac{1}{2}+\frac{2}{7}\right)=\left(x+2018\right)\left(\frac{1}{5}+\frac{1}{6}\right)\)
\(\Leftrightarrow\) \(\left(x+2018\right)\left(\frac{1}{2}+\frac{2}{7}\right)-\left(x+2018\right)\left(\frac{1}{5}+\frac{1}{6}\right)\) = 0
\(\Leftrightarrow\left(x+2018\right)\left(\frac{1}{2}+\frac{2}{7}-\frac{1}{5}-\frac{1}{6}\right)=0\)
\(\Leftrightarrow x+2018=0\)
\(\Leftrightarrow x=-2018\)
b) \(7\left(x-1\right)+2x\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(7+2x\right)=0\)
\(\Leftrightarrow\) x - 1 = 0 hoặc 7 + 2x = 0
1) x - 1 = 0 \(\Leftrightarrow\) x = 1
2) 7 + 2x = 0 \(\Leftrightarrow\) -3,5
Vậy: x = 1; -3,5
b) \(7\left(x-1\right)+2x\left(x-1\right)=0\)
=> \(\left(x-1\right).\left(7+2x\right)=0\)
=> \(\left\{{}\begin{matrix}x-1=0\\7+2x=0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=0+1\\2x=0-7=-7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=1\\x=\left(-7\right):2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=1\\x=-\frac{7}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{1;-\frac{7}{2}\right\}.\)
Chúc bạn học tôt!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x+1\right)^6+\left(y-1\right)^4=-z^2\)
\(\Rightarrow\left(x+1\right)^6+\left(y-1\right)^4+z^2=0\)
Ta có: \(\hept{\begin{cases}\left(x+1\right)^6\ge0\\\left(y-1\right)^4\ge0\\z^2\ge0\end{cases}}\Rightarrow\left(x+1\right)^6+\left(y-1\right)^4+z^2\ge0\)
Mà \(\left(x+1\right)^6+\left(y-1\right)^4+z^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x+1\right)^6=0\\\left(y-1\right)^4=0\\z^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\\z=0\end{cases}}\)
Thay x = -1, y = 1, z = 0 vào P
\(\Rightarrow P=2018.\left(-1\right)^{2016}.1^{2017}-\left(0-1\right)^{2018}\)
\(=2018-1=2017\)
Vậy...
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+.........+\dfrac{2}{x\left(x+1\right)}=\dfrac{2016}{2017}\)
\(\Leftrightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+........+\dfrac{2}{x\left(x+1\right)}=\dfrac{2016}{2017}\)
\(\Leftrightarrow\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+..........+\dfrac{2}{x\left(x+1\right)}=\dfrac{2016}{2018}\)
\(\Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+......+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2016}{2018}\)
\(\Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{x+1}\right)=\dfrac{2016}{2018}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1008}{2018}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2018}\)
\(\Leftrightarrow x+1=2018\)
\(\Leftrightarrow x=2017\)
Vậy ..
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2016}{2018}\)
\(\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{1008}{1009}\)
\(2.\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{1008}{1009}\)
\(2.\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{1008}{1009}\)
\(2.\left(\dfrac{1}{2}-\dfrac{1}{x-1}\right)\) = \(\dfrac{1008}{1009}\)
\(\dfrac{1}{2}-\dfrac{1}{x-1}=\dfrac{504}{1009}\)
\(\dfrac{1}{x-1}=\dfrac{1}{2018}\)
\(x-1=2018\)
\(x=2019\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{3}\) + \(\frac{1}{6}\) + \(\frac{1}{10}\) + ... + \(\frac{1}{x\left(x+1\right):2}\)
= \(\left(1-\frac{1}{2018}\right)-\frac{1}{2018}\)
= \(\frac{2017}{2018}-\frac{1}{2018}\)
= \(\frac{2016}{2018}=\frac{1008}{1009}\)
đặt biểu thức trên bằng A rồi bạn tính 6A lấy 6A trừ cho A ra kết quả rồi chia cho 5 là đc