K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2018

đặt biểu thức trên bằng A rồi bạn tính 6A lấy 6A trừ cho A ra kết quả rồi chia cho 5 là đc

2 tháng 9 2019

=> (x+2020)/5=(x+2020)/6=(x+2020)/3+(x+2020)/2

=>(x+2020)(1/5+1/6)=(x+2020)(1/3+1/2)

Với x+2020=0=>x=-2020

Với x+2020 khác 0=>1/5+1/6=1/3+1/2 ,vô lí 

Vậy x=-2020

2 tháng 8 2019

a) \(\left(x+2018\right)\left(\frac{1}{2}+\frac{2}{7}\right)=\left(x+2018\right)\left(\frac{1}{5}+\frac{1}{6}\right)\)

\(\Leftrightarrow\) \(\left(x+2018\right)\left(\frac{1}{2}+\frac{2}{7}\right)-\left(x+2018\right)\left(\frac{1}{5}+\frac{1}{6}\right)\) = 0

\(\Leftrightarrow\left(x+2018\right)\left(\frac{1}{2}+\frac{2}{7}-\frac{1}{5}-\frac{1}{6}\right)=0\)

\(\Leftrightarrow x+2018=0\)

\(\Leftrightarrow x=-2018\)

b) \(7\left(x-1\right)+2x\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(7+2x\right)=0\)

\(\Leftrightarrow\) x - 1 = 0 hoặc 7 + 2x = 0

1) x - 1 = 0 \(\Leftrightarrow\) x = 1

2) 7 + 2x = 0 \(\Leftrightarrow\) -3,5

Vậy: x = 1; -3,5

2 tháng 8 2019

b) \(7\left(x-1\right)+2x\left(x-1\right)=0\)

=> \(\left(x-1\right).\left(7+2x\right)=0\)

=> \(\left\{{}\begin{matrix}x-1=0\\7+2x=0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=0+1\\2x=0-7=-7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=1\\x=\left(-7\right):2\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=1\\x=-\frac{7}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{1;-\frac{7}{2}\right\}.\)

Chúc bạn học tôt!

26 tháng 5 2017

\(\left(x+1\right)^6+\left(y-1\right)^4=-z^2\)

\(\Rightarrow\left(x+1\right)^6+\left(y-1\right)^4+z^2=0\)

Ta có: \(\hept{\begin{cases}\left(x+1\right)^6\ge0\\\left(y-1\right)^4\ge0\\z^2\ge0\end{cases}}\Rightarrow\left(x+1\right)^6+\left(y-1\right)^4+z^2\ge0\)

Mà \(\left(x+1\right)^6+\left(y-1\right)^4+z^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(x+1\right)^6=0\\\left(y-1\right)^4=0\\z^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\\z=0\end{cases}}\)

Thay x = -1, y = 1, z = 0 vào P

\(\Rightarrow P=2018.\left(-1\right)^{2016}.1^{2017}-\left(0-1\right)^{2018}\)

\(=2018-1=2017\)

Vậy...

1 tháng 1 2018

\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+.........+\dfrac{2}{x\left(x+1\right)}=\dfrac{2016}{2017}\)

\(\Leftrightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+........+\dfrac{2}{x\left(x+1\right)}=\dfrac{2016}{2017}\)

\(\Leftrightarrow\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+..........+\dfrac{2}{x\left(x+1\right)}=\dfrac{2016}{2018}\)

\(\Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+......+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2016}{2018}\)

\(\Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{x+1}\right)=\dfrac{2016}{2018}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1008}{2018}\)

\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2018}\)

\(\Leftrightarrow x+1=2018\)

\(\Leftrightarrow x=2017\)

Vậy ..

1 tháng 1 2018

\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2016}{2018}\)

\(\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{1008}{1009}\)

\(2.\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{1008}{1009}\)

\(2.\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{1008}{1009}\)

\(2.\left(\dfrac{1}{2}-\dfrac{1}{x-1}\right)\) = \(\dfrac{1008}{1009}\)

\(\dfrac{1}{2}-\dfrac{1}{x-1}=\dfrac{504}{1009}\)

\(\dfrac{1}{x-1}=\dfrac{1}{2018}\)

\(x-1=2018\)

\(x=2019\)

27 tháng 12 2017

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2016}{2018}\)

\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{504}{1009}\)

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{504}{1009}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{504}{1009}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{504}{1009}\)

\(\frac{1}{x+1}=\frac{1}{2}-\frac{504}{1009}\)

\(\frac{1}{x+1}=\frac{1}{2018}\)

\(\Rightarrow x+1=2018\)

\(\Rightarrow x=2017\)

8 tháng 7 2017

\(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)

\(\Leftrightarrow\left(\frac{x+2015}{5}+1\right)+\left(\frac{x+2016}{4}+1\right)=\left(\frac{x+2017}{3}+1\right)+\left(\frac{x+2018}{2}+1\right)\)

\(\Leftrightarrow\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)

\(\Leftrightarrow x+2020=0\)vì \(\frac{1}{5}+\frac{1}{4}+\frac{1}{3}+\frac{1}{2}\ne0\)

\(\Leftrightarrow x=-2020\)

1 tháng 8 2017

khó lắm

bây h thì bạn giải đc chưa

2 tháng 7 2019

\(a,A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)-2018\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)-2018\)

Đặt \(x^2+5x=a\)

\(\Rightarrow A=\left(a-6\right)\left(a+6\right)-2018=a^2-2054\)

\(\Rightarrow A_{min}=2054\Leftrightarrow a=0\)

\(\Rightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)

\(\Leftrightarrow x\in\left\{0;-5\right\}\)

2 tháng 7 2019

\(b,B=\left(x-1\right)\left(x-4\right)\left(x-5\right)\left(x-8\right)+2018.\)

\(=\left(x^2-9x+8\right)\left(x^2-9x+20\right)+2018\)

Đặt \(x^2-9x+14=a\)

\(\Rightarrow B=\left(a-6\right)\left(a+6\right)+2018\)

\(=a^2-36+2018=a^2+1982\)

\(\Rightarrow B_{min}=1982\Leftrightarrow a^2=0\Rightarrow a=0\)

\(\Rightarrow x^2-9x+14=0\)

\(\Rightarrow x^2-2x-7x+14=0\)

\(\Leftrightarrow x\left(x-2\right)-7\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x-7\right)=0\)

\(\Rightarrow x\in\left\{2;7\right\}\)

28 tháng 8 2019

a,\(\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}=\frac{x+1}{8}+\frac{x+1}{9}\) (1)

<=> \(\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}-\frac{x+1}{8}-\frac{x+1}{9}=0\)

<=> \(\left(x+1\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}-\frac{1}{8}-\frac{1}{9}\right)=0\)

=> x+1=0 (vì \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}-\frac{1}{8}-\frac{1}{9}\ne0\))

<=> x=-1

Vậy pt (1) có tập nghiệm S\(=\left\{-1\right\}\)

b, \(\frac{x+6}{2015}+\frac{x+5}{2016}+\frac{x+4}{2017}=\frac{x+3}{2018}+\frac{x+2}{2019}+\frac{x+1}{2010}\)(2)

<=> \(\frac{x+6}{2015}+1+\frac{x+5}{2016}+1+\frac{x+4}{2017}+1=\frac{x+3}{2018}+1+\frac{x+2}{2019}+1+\frac{x+1}{2020}+1\)

<=> \(\frac{x+2021}{2015}+\frac{x+2021}{2016}+\frac{x+2021}{2017}-\frac{x+2021}{2018}-\frac{x+2021}{2019}-\frac{x+2021}{2020}=0\)

<=> \(\left(x+2021\right)\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)

=> x+2021=0(vì \(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\ne0\))

<=> x=-2021

Vậy pt (2) có tập nghiệm S=\(\left\{-2021\right\}\)

c,\(\frac{x+6}{2016}+\frac{x+7}{2017}+\frac{x+8}{2018}=\frac{x+9}{2019}+\frac{x+10}{2020}+1\) (3)

<=> \(\frac{x+6}{2016}-1+\frac{x+7}{2017}-1+\frac{x+8}{2018}-1=\frac{x+9}{2019}-1+\frac{x+10}{2020}-1+1-1\)

<=> \(\frac{x-2010}{2016}+\frac{x-2010}{2017}+\frac{x-2010}{2018}=\frac{x-2010}{2019}+\frac{x-2010}{2020}\)

<=> \(\frac{x-2010}{2016}+\frac{x-2010}{2017}+\frac{x-2010}{2018}-\frac{x-2010}{2019}-\frac{x-2010}{2020}=0\)

<=> \(\left(x-2010\right)\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)

=> x-2010=0 (vì \(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\ne0\))

<=> x=2010

Vậy pt (3) có tập nghiệm S=\(\left\{2010\right\}\)

d, \(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15\) (4)

<=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=15-1-2-3-4-5\)

<=> \(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)

<=> (x-100)(\(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\))=0

=> x -100=0(vì \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\))

<=> x=100

Vậy pt (4) có tập nghiệm S=\(\left\{100\right\}\)

28 tháng 8 2019

a) \(\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}=\frac{x+1}{8}+\frac{x+1}{9}\)

\(\Leftrightarrow\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}-\frac{x+1}{8}-\frac{x+1}{9}=0\)

\(\Leftrightarrow\left(x+1\right).\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}-\frac{1}{8}-\frac{1}{9}\right)=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=0-1\)

\(\Rightarrow x=-1\)

Vậy \(x=-1.\)

Mình chỉ làm câu a) thôi nhé.

Chúc bạn học tốt!