Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+.........+\dfrac{2}{x\left(x+1\right)}=\dfrac{2016}{2017}\)
\(\Leftrightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+........+\dfrac{2}{x\left(x+1\right)}=\dfrac{2016}{2017}\)
\(\Leftrightarrow\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+..........+\dfrac{2}{x\left(x+1\right)}=\dfrac{2016}{2018}\)
\(\Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+......+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2016}{2018}\)
\(\Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{x+1}\right)=\dfrac{2016}{2018}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1008}{2018}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2018}\)
\(\Leftrightarrow x+1=2018\)
\(\Leftrightarrow x=2017\)
Vậy ..
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2016}{2018}\)
\(\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{1008}{1009}\)
\(2.\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{1008}{1009}\)
\(2.\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{1008}{1009}\)
\(2.\left(\dfrac{1}{2}-\dfrac{1}{x-1}\right)\) = \(\dfrac{1008}{1009}\)
\(\dfrac{1}{2}-\dfrac{1}{x-1}=\dfrac{504}{1009}\)
\(\dfrac{1}{x-1}=\dfrac{1}{2018}\)
\(x-1=2018\)
\(x=2019\)
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+.........+\dfrac{1}{x\left(x+1\right)}=\dfrac{2016}{2018}\)
\(\Leftrightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...........+\dfrac{2}{x\left(x+1\right)}=\dfrac{2016}{2017}\)
\(\Leftrightarrow2\left(\dfrac{1}{6}+\dfrac{1}{12}+........+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2016}{2018}\)
\(\Leftrightarrow2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2016}{2018}\)
\(\Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2016}{2018}\)
\(\Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{x+1}\right)=\dfrac{2016}{2018}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1008}{2018}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2018}\)
\(\Leftrightarrow x+1=2018\)
\(\Leftrightarrow x=2017\)
Vậy ...
\(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)
\(\Leftrightarrow\left(\frac{x+2015}{5}+1\right)+\left(\frac{x+2016}{4}+1\right)=\left(\frac{x+2017}{3}+1\right)+\left(\frac{x+2018}{2}+1\right)\)
\(\Leftrightarrow\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)
\(\Leftrightarrow x+2020=0\)vì \(\frac{1}{5}+\frac{1}{4}+\frac{1}{3}+\frac{1}{2}\ne0\)
\(\Leftrightarrow x=-2020\)
a,\(\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}=\frac{x+1}{8}+\frac{x+1}{9}\) (1)
<=> \(\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}-\frac{x+1}{8}-\frac{x+1}{9}=0\)
<=> \(\left(x+1\right)\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}-\frac{1}{8}-\frac{1}{9}\right)=0\)
=> x+1=0 (vì \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}-\frac{1}{8}-\frac{1}{9}\ne0\))
<=> x=-1
Vậy pt (1) có tập nghiệm S\(=\left\{-1\right\}\)
b, \(\frac{x+6}{2015}+\frac{x+5}{2016}+\frac{x+4}{2017}=\frac{x+3}{2018}+\frac{x+2}{2019}+\frac{x+1}{2010}\)(2)
<=> \(\frac{x+6}{2015}+1+\frac{x+5}{2016}+1+\frac{x+4}{2017}+1=\frac{x+3}{2018}+1+\frac{x+2}{2019}+1+\frac{x+1}{2020}+1\)
<=> \(\frac{x+2021}{2015}+\frac{x+2021}{2016}+\frac{x+2021}{2017}-\frac{x+2021}{2018}-\frac{x+2021}{2019}-\frac{x+2021}{2020}=0\)
<=> \(\left(x+2021\right)\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
=> x+2021=0(vì \(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\ne0\))
<=> x=-2021
Vậy pt (2) có tập nghiệm S=\(\left\{-2021\right\}\)
c,\(\frac{x+6}{2016}+\frac{x+7}{2017}+\frac{x+8}{2018}=\frac{x+9}{2019}+\frac{x+10}{2020}+1\) (3)
<=> \(\frac{x+6}{2016}-1+\frac{x+7}{2017}-1+\frac{x+8}{2018}-1=\frac{x+9}{2019}-1+\frac{x+10}{2020}-1+1-1\)
<=> \(\frac{x-2010}{2016}+\frac{x-2010}{2017}+\frac{x-2010}{2018}=\frac{x-2010}{2019}+\frac{x-2010}{2020}\)
<=> \(\frac{x-2010}{2016}+\frac{x-2010}{2017}+\frac{x-2010}{2018}-\frac{x-2010}{2019}-\frac{x-2010}{2020}=0\)
<=> \(\left(x-2010\right)\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
=> x-2010=0 (vì \(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\ne0\))
<=> x=2010
Vậy pt (3) có tập nghiệm S=\(\left\{2010\right\}\)
d, \(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15\) (4)
<=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=15-1-2-3-4-5\)
<=> \(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
<=> (x-100)(\(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\))=0
=> x -100=0(vì \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\))
<=> x=100
Vậy pt (4) có tập nghiệm S=\(\left\{100\right\}\)
a) \(\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}=\frac{x+1}{8}+\frac{x+1}{9}\)
\(\Leftrightarrow\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}-\frac{x+1}{8}-\frac{x+1}{9}=0\)
\(\Leftrightarrow\left(x+1\right).\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}-\frac{1}{8}-\frac{1}{9}\right)=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=0-1\)
\(\Rightarrow x=-1\)
Vậy \(x=-1.\)
Mình chỉ làm câu a) thôi nhé.
Chúc bạn học tốt!
1.4m+7n=0
=>4m=-7n
=>mx2-4m=0
=>m(x2-4)=0
=>m=0 hoặc x=2 hoặc x=-2
\(\dfrac{x-1}{2019}+\dfrac{x-2}{2018}=\dfrac{x-3}{2017}+\dfrac{x-4}{2016}\)
\(\Leftrightarrow\left(\dfrac{x-1}{2019}-1\right)+\left(\dfrac{x-2}{2018}-1\right)=\left(\dfrac{x-3}{2017}-1\right)+\left(\dfrac{x-4}{2016}-1\right)\)
\(\Leftrightarrow\dfrac{x-2020}{2019}+\dfrac{x-2020}{2018}=\dfrac{x-2020}{2017}+\dfrac{x-2020}{2016}\)
\(\Leftrightarrow\dfrac{x-2020}{2019}+\dfrac{x-2020}{2018}-\dfrac{x-2020}{2017}-\dfrac{x-2020}{2016}\)
\(\Leftrightarrow\left(x-2020\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2016}\right)=0\)
Mà \(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2016}\ne0\)
\(\Leftrightarrow x-2020=0\)
\(\Leftrightarrow x=2020\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2016}{2018}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{504}{1009}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{504}{1009}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{504}{1009}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{504}{1009}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{504}{1009}\)
\(\frac{1}{x+1}=\frac{1}{2018}\)
\(\Rightarrow x+1=2018\)
\(\Rightarrow x=2017\)