Giải
\(\sqrt{x}+\sqrt{10-x}=4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4) Ta có: \(\left(x+3\right)\cdot\sqrt{10-x^2}=x^2-x-12\)
\(\Leftrightarrow\left(x+3\right)\cdot\sqrt{10-x^2}-\left(x-4\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(\sqrt{10-x^2}-x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\\sqrt{10-x^2}=x-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\10-x^2=x^2-8x+16\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x^2-8x+16-10+x^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\2x^2-8x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\2\left(x^2-4x+3\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\\left(x-1\right)\left(x-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\\x=3\end{matrix}\right.\)
a.
\(\sqrt{x+4\sqrt{x}+4=5x+2}\)
\(\Rightarrow\sqrt{\left(\sqrt{x}\right)^2+2.2.\sqrt{x}+2^2}=5x+2\)
\(\Rightarrow\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)
\(\Rightarrow\sqrt{x}+2=5x+2\)
\(\Rightarrow\sqrt{x}=5x\)
\(\Rightarrow x=25x^2\)
\(\Rightarrow x=0\)
Vậy nghiệm của phương trình là x = 0
b)
\(\sqrt{x-2\sqrt{x}+1}-\sqrt{x-4\sqrt{x}+4}=10\)
\(\Rightarrow\sqrt{\left(\sqrt{x}-1\right)^2}-\sqrt{\left(\sqrt{x}-2\right)^2=10}\)
\(\Rightarrow\sqrt{x}-1-\sqrt{x}+2=10\)
\(\Rightarrow1=10\) (Vô lí)
Vậy phương trình đã cho vô nghiệm
1/\(\sqrt{x-4}-\sqrt{1-x}=1\)
Để Pt dc xác định
Thì\(\left\{{}\begin{matrix}x-4\ge0\\1-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x\le1\end{matrix}\right.\)
Vì xét trên trục số ta thấy nó loại nhau
Nên Pt này vô nghiệm
1)ĐKXĐ: \(-4\le x\le1\)
\(\sqrt{x+4}-\sqrt{1-x}=1\\ \Rightarrow\sqrt{x+4}=\sqrt{1-x}+1\\ \Rightarrow x+4=1-x+2\sqrt{1-x}+1\\ \Rightarrow2x+2=2\sqrt{1-x}\\ \Rightarrow x+1=\sqrt{1-x}\\ \Rightarrow x^2+2x+1=1-x\\ \Rightarrow x^2+3x=0\\ \Rightarrow x\left(x+3\right)=0\\ \Rightarrow x=-3\)
Vậy x = -3
2)ĐKXĐ: \(-\sqrt{10}\le x\le\sqrt{10}\)
Với x = -3 thì:
0=0(luôn đúng)
Với x khác -3 thì:
\(\left(x+3\right)\sqrt{10-x^2}=x^2-x+12\\ \Rightarrow\left(x+3\right)\sqrt{10-x^2}=\left(x+3\right)\left(x-4\right)\\ \Rightarrow\sqrt{10-x^2}=x-4\\ \Rightarrow10-x^2=x^2-8x+16\\ \Rightarrow2x^2-8x+6=0\\ \Rightarrow x^2-4x+3=0\\ \Rightarrow\left(x-1\right)\left(x-3\right)=0\\ \Rightarrow x\in\left\{1;3\right\}\)
Vậy x\(\in\left\{-3;1;3\right\}\)
Lời giải:
ĐKXĐ: \(x\geq -1\)
\(PT\Leftrightarrow \sqrt{(x+1)-4\sqrt{x+1}+4}+\sqrt{(x+1)-6\sqrt{x+1}+9}=1\)
\(\Leftrightarrow \sqrt{(\sqrt{x+1}-2)^2}+\sqrt{(\sqrt{x+1}-3)^2}=1\)
\(\Leftrightarrow |\sqrt{x+1}-2|+|3-\sqrt{x+1}|=1\)
Áp dụng BĐT dạng $|a|+|b|\ge |a+b|$ ta có:
$|\sqrt{x+1}-2|+|3-\sqrt{x+1}|\geq |\sqrt{x+1}-2+3-\sqrt{x+1}|=1$
Dấu "=" xảy ra khi $(\sqrt{x+1}-2)(3-\sqrt{x+1})\geq 0$
$\Leftrightarrow 2\leq \sqrt{x+1}\leq 3$
$\Leftrightarrow 3\leq x\leq 8$
Vậy.........
Lời giải:
ĐKXĐ: \(x\geq -1\)
\(PT\Leftrightarrow \sqrt{(x+1)-4\sqrt{x+1}+4}+\sqrt{(x+1)-6\sqrt{x+1}+9}=1\)
\(\Leftrightarrow \sqrt{(\sqrt{x+1}-2)^2}+\sqrt{(\sqrt{x+1}-3)^2}=1\)
\(\Leftrightarrow |\sqrt{x+1}-2|+|3-\sqrt{x+1}|=1\)
Áp dụng BĐT dạng $|a|+|b|\ge |a+b|$ ta có:
$|\sqrt{x+1}-2|+|3-\sqrt{x+1}|\geq |\sqrt{x+1}-2+3-\sqrt{x+1}|=1$
Dấu "=" xảy ra khi $(\sqrt{x+1}-2)(3-\sqrt{x+1})\geq 0$
$\Leftrightarrow 2\leq \sqrt{x+1}\leq 3$
$\Leftrightarrow 3\leq x\leq 8$
Vậy.........
ĐKXĐ: \(\dfrac{74}{9}\le x\le10\)
Đặt \(\sqrt{10-x}=t\Rightarrow0\le t\le\dfrac{4}{3}\) \(\Rightarrow x=10-t^2\)
Ta được:
\(2+\sqrt{4-3t}=\dfrac{10-t^2}{3}\)
\(\Leftrightarrow\sqrt{4-3t}-1=\dfrac{10-t^2}{3}-3\)
\(\Leftrightarrow\dfrac{3\left(1-t\right)}{\sqrt{4-3t}+1}=\dfrac{\left(1-t\right)\left(1+t\right)}{3}\)
\(\Rightarrow\left[{}\begin{matrix}t=1\Rightarrow x=9\\\dfrac{3}{\sqrt{4-3t}+1}=\dfrac{t+1}{3}\left(1\right)\end{matrix}\right.\)
Xét (1), do \(0\le t\le\dfrac{4}{3}\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{\sqrt{4-3t}+1}\ge1\\\dfrac{t+1}{3}\le\dfrac{\dfrac{4}{3}+1}{3}=\dfrac{7}{9}< 1\end{matrix}\right.\)
\(\Rightarrow\left(1\right)\) vô nghiệm
Vậy pt có nghiệm duy nhất \(x=9\)
Đặt \(x^2+x+10=a\)
=>\(\dfrac{a-10}{\sqrt{a}}+2=\sqrt{a-6}\)
=>\(\dfrac{a-10}{\sqrt{a}}=\sqrt{a-6}-2=\dfrac{a-6-4}{\sqrt{a-6}+2}\)
=>căn a=căn a-6+2
=>a=a-6+4+4*căn a-6
=>4*căn a-6=2
=>căn a-6=1/2
=>a-6=1/4
=>a=25/4
=>x^2+x+10=25/4
=>x^2+x+15/4=0(loại)
=>Ko có x thỏa mãn
bình phương được
\(10+2\sqrt{10x-x^2}=16\)
\(\Leftrightarrow\sqrt{10x-x^2}=3\Leftrightarrow10x-x^2=9\Leftrightarrow x=5\pm\sqrt{34}\)
\(\sqrt{x}+\sqrt{10-x}=4\) (ĐKXĐ: \(0< x< 10\))
\(\Leftrightarrow\left(\sqrt{x}+\sqrt{10-x}\right)^2=4^2\)
\(\Leftrightarrow x+10-x+2\sqrt{x\left(10-x\right)}=16\)
\(\Leftrightarrow10+2\sqrt{x\left(10-x\right)}=16\)
\(\Leftrightarrow2\sqrt{x\left(10-x\right)}=6\)
\(\Leftrightarrow\sqrt{x\left(10-x\right)}=3\)
\(\Leftrightarrow x\left(10-x\right)=9\)
\(\Leftrightarrow10x-x^2=9\)
\(\Leftrightarrow-x^2+10x-9=0\)
\(\Leftrightarrow x^2-10+9=0\)(nhân cả 2 vế với -1)
\(\Leftrightarrow\left(x-9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-9=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=9\left(TM\right)\\x=1\left(TM\right)\end{cases}}}\)
Vậy nghiệm của PT là \(x\in\left\{1;9\right\}\)