Cho đường thẳng (D): y= (m-3)x + 2m -1. Tìm m để (D) cắt Ox tại A, cắt Oy tại B sao cho khoảng cách từ O đến AB lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=3 và y=8 vào (d), ta được:
3(m-1)+2m-1=8
=>5m-4=8
=>5m=12
=>m=12/5
b: Tọa độ A là:
y=0 và x=(-2m+1)/(m-1)
=>OA=|2m-1/m-1|
Tọa độ B là:\
x=0 và y=2m-1
=>OB=|2m-1|
Để ΔOAB vuông cân tại O thì OA=OB
=>|2m-1|(1/|m-1|-1)=0
=>m=1/2 hoặc m=2 hoặc m=0
PT giao Ox, Oy là:
\(y=0\Leftrightarrow x=\dfrac{2}{2m+1}\Leftrightarrow A\left(\dfrac{2}{2m+1};0\right)\Leftrightarrow OA=\dfrac{2}{\left|2m+1\right|}\\ x=0\Leftrightarrow y=-2\Leftrightarrow B\left(0;-2\right)\Leftrightarrow OB=2\)
\(a,\) Gọi H là chân đường cao từ O đến (d) \(\Leftrightarrow OH=\sqrt{2}\)
Ap dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{\left(2m+1\right)^2}{4}+\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{\left(2m+1\right)^2}{4}=\dfrac{1}{4}\Leftrightarrow4m^2+4m+1=1\\ \Leftrightarrow4m\left(m+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m=-1\end{matrix}\right.\)
\(b,S_{AOB}=\dfrac{1}{2}OA\cdot OB=\dfrac{1}{2}\Leftrightarrow OB\cdot OA=1\\ \Leftrightarrow\dfrac{2}{\left|2m+1\right|}\cdot2=1\Leftrightarrow\left|2m+1\right|=4\\ \Leftrightarrow\left[{}\begin{matrix}2m+1=4\\2m+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{2}\\m=-\dfrac{5}{2}\end{matrix}\right.\)
Gọi tọa độ A ; B lần lượt là A(x1 ; 0) ; B(0 ; y1)
Vì B thuộc (d) => y1 = (m - 1).0 + 3 = 3
Ta có khoảng cách từ O đến (d) = \(\frac{3}{\sqrt{5}}\)
=> PT : \(\left(\frac{1}{\left|x_1\right|}\right)^2+\left(\frac{1}{\left|y_1\right|}\right)^2=\left(\frac{1}{\frac{3}{\sqrt{5}}}\right)^2\)
\(\Leftrightarrow\frac{1}{x_1^2}+\frac{1}{y_1^2}=\frac{5}{9}\)
\(\Leftrightarrow\frac{1}{x_1^2}+\frac{1}{9}=\frac{5}{9}\Leftrightarrow\frac{1}{x_1^2}=\frac{4}{9}\Leftrightarrow x_1=\frac{3}{2}\)
Với x1 = 3/2 ; y1 = 9 => 9 = (m - 1).1,5 + 3 <=> m = 5
Vậy m = 5 thì khoảng cách từ O đến (d) là \(\frac{3}{\sqrt{5}}\)
d ∩ O y = B x B = 0 ⇒ y B = 4 ⇔ B 0 ; 4 ⇒ O B = 4 = 4 d ∩ O x = A y A = 0 ⇔ m 2 – 2 m + 2 x A + 4 = 0 x A = x A = − 4 m 2 − 2 m + 2 ⇒ A − 4 m 2 − 2 m + 2 ; 0 ⇒ O A − 4 m 2 − 2 m + 2
\ S Δ A O B = 1 2 O A . O B = 1 2 .4. − 4 m 2 − 2 m + 2 = 8 m − 1 2 + 1
Ta có m – 1 2 + 1 ≥ 1 ∀ m
Do đó S Δ A O B = 8 m − 1 2 + 1 ≤ 8 1 = 8
Dấu “=” xảy ra khi m – 1 = 0 ⇔ m = 1
Hay tam giác OAB có diện tích lớn nhất là 8 khi m = 1
Đáp án cần chọn là: A